Direkt zum Inhalt
Suchergebnisse 211 - 240 von 332

Geschwindigkeit einer Gewehrkugel

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeUm die Geschwindigkeit \(v\) einer Gewehrkugel zu bestimmen, schießt man auf zwei Pappscheiben,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeUm die Geschwindigkeit \(v\) einer Gewehrkugel zu bestimmen, schießt man auf zwei Pappscheiben,…

Zur Aufgabe

Vollbremsung oder Kurvenfahrt

Aufgabe ( Übungsaufgaben )

Ein Autofahrer sieht plötzlich eine sehr breite Mauer vor sich auftauchen. Untersuche, bei welcher der folgenden beiden Möglichkeiten er die größere…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Autofahrer sieht plötzlich eine sehr breite Mauer vor sich auftauchen. Untersuche, bei welcher der folgenden beiden Möglichkeiten er die größere…

Zur Aufgabe

Rückstoß beim Gewehr

Aufgabe ( Übungsaufgaben )

a) Joachim Herz Stiftung Abb. 1 Mit…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Joachim Herz Stiftung Abb. 1 Mit…

Zur Aufgabe

Physik des Bogenschießens

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Position der PfeilendenEin Bogenschütze wurde mit einer Hoch­geschwindigkeits­kamera gefilmt. Mithilfe einer…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Position der PfeilendenEin Bogenschütze wurde mit einer Hoch­geschwindigkeits­kamera gefilmt. Mithilfe einer…

Zur Aufgabe

Das Echo vom Königssee

Aufgabe ( Übungsaufgaben )

  Bild mit freundlicher Genehmigung der staatlichen bayerischen Seenschifffahrt. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

  Bild mit freundlicher Genehmigung der staatlichen bayerischen Seenschifffahrt. …

Zur Aufgabe

Geostationäre Satelliten

Aufgabe ( Übungsaufgaben )

ESA Abb. 1 Meteosat WettersatellitEin Satellit der Masse \(m_\rm{S}=500\,\rm{kg}\) soll in eine geostationäre Umlaufbahn gebracht werden. Man…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

ESA Abb. 1 Meteosat WettersatellitEin Satellit der Masse \(m_\rm{S}=500\,\rm{kg}\) soll in eine geostationäre Umlaufbahn gebracht werden. Man…

Zur Aufgabe

Tiefe eines Brunnens

Aufgabe ( Übungsaufgaben )

Bild von Jazella auf Pixabay Abb. 1 BrunnenZur Bestimmung der Tiefe eines Brunnens lässt jemand eine Münze in den Brunnen fallen. Er hört das…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Bild von Jazella auf Pixabay Abb. 1 BrunnenZur Bestimmung der Tiefe eines Brunnens lässt jemand eine Münze in den Brunnen fallen. Er hört das…

Zur Aufgabe

Standardaufgaben zum senkrechten Wurf nach oben

Aufgabe ( Einstiegsaufgaben )

Spur HTML5-Canvas nicht unterstützt! // Senkrechter Wurf nach oben Animation // 14.8.2017 //…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Spur HTML5-Canvas nicht unterstützt! // Senkrechter Wurf nach oben Animation // 14.8.2017 //…

Zur Aufgabe

Standardaufgaben zum freien Fall

Aufgabe ( Einstiegsaufgaben )
Aufgabe ( Einstiegsaufgaben )

Flüssigkeitspendel

Aufgabe ( Übungsaufgaben )

Größen HTML5-Canvas nicht unterstützt! // Flüssigkeitspendel (Animation) // 8.9.2022 //…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Größen HTML5-Canvas nicht unterstützt! // Flüssigkeitspendel (Animation) // 8.9.2022 //…

Zur Aufgabe

Looping mit dem Jaguar

Aufgabe ( Übungsaufgaben )

Im Kölner Stadt-Anzeiger vom 5./6. August 2017 fanden wir im Artikel "Mangelnde Bodenhaftung" über die Geschichte der Autoindustrie die folgenden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Kölner Stadt-Anzeiger vom 5./6. August 2017 fanden wir im Artikel "Mangelnde Bodenhaftung" über die Geschichte der Autoindustrie die folgenden…

Zur Aufgabe

Seilwelle

Aufgabe ( Übungsaufgaben )

Mit Hilfe eines Seils lässt sich sehr einfach eine Querwelle (Transversalwelle) erzeugen. Die beiden Diagramme unten zeigen zum einen die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Mit Hilfe eines Seils lässt sich sehr einfach eine Querwelle (Transversalwelle) erzeugen. Die beiden Diagramme unten zeigen zum einen die…

Zur Aufgabe

Baderutsche

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Flugbahn von der RutscheEin Kind rutscht im Schwimmbad eine Rutsche hinunter. Es verlässt sie horizontal und…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Flugbahn von der RutscheEin Kind rutscht im Schwimmbad eine Rutsche hinunter. Es verlässt sie horizontal und…

Zur Aufgabe

Arbeit des Herzens

Aufgabe ( Übungsaufgaben )

Clker-Free-Vector-Images auf Pixabay Abb. 1 Vereinfachte Darstellung des Blutkreislaufes im menschlichen Körper.Dein Herz pumpt in jeder…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Clker-Free-Vector-Images auf Pixabay Abb. 1 Vereinfachte Darstellung des Blutkreislaufes im menschlichen Körper.Dein Herz pumpt in jeder…

Zur Aufgabe

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Kosmologie und Standardmodell

Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel
Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Sonnenfinsternis

Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

3. NEWTONsches Gesetz (Wechselwirkungsprinzip)

Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energietransfer

Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

1. Newtonsches Gesetz (Trägheitsgesetz)

Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben