Direkt zum Inhalt

Grundwissen & Aufgaben

Im Grundwissen kommen wir direkt auf den Punkt. Hier findest du die wichtigsten Ergebnisse und Formeln für deinen Physikunterricht. Und damit der Spaß nicht zu kurz kommt, gibt es die beliebten LEIFI-Quizze und abwechslungsreiche Übungsaufgaben mit ausführlichen Musterlösungen. So kannst du prüfen, ob du alles verstanden hast.

  • Charakterisierung der gleichförmigen Kreisbewegung

    • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
    • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.
  • Größen zur Beschreibung einer Kreisbewegung

    • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
    • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
    • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
    • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
    • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
    • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
    • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
    • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)
  • Bahngeschwindigkeit und Winkelgeschwindigkeit

    • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
    • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
    • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)
  • Zentripetalbeschleunigung

    • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
    • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
    • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
  • Zentripetalkraft

    • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
    • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
    • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.
  • Wirkung einer Kraft als Zentripetalkraft

    • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
    • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
  • Zentripetalkraft als resultierende Kraft

    • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
    • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
    • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
    • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
  • Kreisbewegung unter Einfluss zusätzlicher Kräfte

    • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
    • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
    • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
  • Bahngeschwindigkeit vektoriell

    • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
    • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)
  • Zentripetalbeschleunigung vektoriell

    • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
    • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
    • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Versuche

Das Salz in der Suppe der Physik sind die Versuche. Ob grundlegende Demonstrationsexperimente, die du aus dem Unterricht kennst, pfiffige Heimexperimente zum eigenständigen Forschen oder Simulationen von komplexen Experimenten, die in der Schule nicht durchführbar sind - wir bieten dir eine abwechslungsreiche Auswahl zum selbstständigen Auswerten und Weiterdenken an. Mit interaktiven Versuchen kannst du die erste Schritte Richtung Nobelpreis zurücklegen.

Mehr erfahren Mehr erfahren

Ausblick

Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.

Mehr erfahren Mehr erfahren

Downloads

Lade unsere Simulationen, Animationen und interaktive Tafelbilder für den Unterricht oder eine Präsentation kostenfrei herunter.

Mehr erfahren Mehr erfahren

Weblinks

Von Cern und NASA über Unterrichtsmaterial bis Videos, unsere Auswahl aus dem World Wide Web. Viel Spaß beim Stöbern.

Mehr erfahren Mehr erfahren