Direkt zum Inhalt

Grundwissen & Aufgaben

Im Grundwissen kommen wir direkt auf den Punkt. Hier findest du die wichtigsten Ergebnisse und Formeln für deinen Physikunterricht. Und damit der Spaß nicht zu kurz kommt, gibt es die beliebten LEIFI-Quizze und abwechslungsreiche Übungsaufgaben mit ausführlichen Musterlösungen. So kannst du prüfen, ob du alles verstanden hast.

  • Gravitationsgesetz von NEWTON

    • Alle Körper üben aufgrund ihrer Massen aufeinander anziehende Kräfte aus, die man als Gravitationskräfte bezeichnet.
    • Die Richtung dieser Kräfte verläuft auf der Verbindungslinie der Schwerpunkte der beiden Körper, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
    • Der Betrag ist proportional zu den Massen der beiden Körper und umgekehrt proportional zum Quadrat des Abstandes ihrer beiden Schwerpunkte. Die Proportionalitätskonstante bezeichnet man als Gravitationskonstante.
  • Gravitationskraft

    • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Vebindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
    • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).
  • Gravitationsfeld

    • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
    • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
    • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
    • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).
  • Arbeit im Gravitationsfeld

  • Potenzielle Energie im Gravitationsfeld

  • Stabile Kreisbahnen im Gravitationsfeld

    Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

    • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
    • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
    • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)
  • Kosmische Geschwindigkeiten

    Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

    • einen Satelliten in eine stabile Umlaufbahn zu bringen
    • Menschen zu anderen Himmelskörpern zu befördern
    • mit einer Sonde unser Sonnensystem verlassen zu können.
  • Gezeiten

Versuche

Das Salz in der Suppe der Physik sind die Versuche. Ob grundlegende Demonstrationsexperimente, die du aus dem Unterricht kennst, pfiffige Heimexperimente zum eigenständigen Forschen oder Simulationen von komplexen Experimenten, die in der Schule nicht durchführbar sind - wir bieten dir eine abwechslungsreiche Auswahl zum selbstständigen Auswerten und Weiterdenken an. Mit interaktiven Versuchen kannst du die erste Schritte Richtung Nobelpreis zurücklegen.

Mehr erfahren Mehr erfahren

Ausblick

Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.

Mehr erfahren Mehr erfahren

Geschichte

Die moderne Physik beruht auf den Erkenntnissen von Wissenschaftlerinnen und Wissenschaftlern in ihrer jeweiligen Zeit. Aber lies selbst!

Mehr erfahren Mehr erfahren

Downloads

Lade unsere Simulationen, Animationen und interaktive Tafelbilder für den Unterricht oder eine Präsentation kostenfrei herunter.

Mehr erfahren Mehr erfahren

Weblinks

Von Cern und NASA über Unterrichtsmaterial bis Videos, unsere Auswahl aus dem World Wide Web. Viel Spaß beim Stöbern.

Mehr erfahren Mehr erfahren