Direkt zum Inhalt

Grundwissen & Aufgaben

Im Grundwissen kommen wir direkt auf den Punkt. Hier findest du die wichtigsten Ergebnisse und Formeln für deinen Physikunterricht. Und damit der Spaß nicht zu kurz kommt, gibt es die beliebten LEIFI-Quizze und abwechslungsreiche Übungsaufgaben mit ausführlichen Musterlösungen. So kannst du prüfen, ob du alles verstanden hast.

  • Waagerechter Wurf

    • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
    • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
    • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
    • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).
  • Schräger Wurf ohne Anfangshöhe

    • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
    • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
    • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
    • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
  • Schräger Wurf

    • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
    • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
    • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
    • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Versuche

Das Salz in der Suppe der Physik sind die Versuche. Ob grundlegende Demonstrationsexperimente, die du aus dem Unterricht kennst, pfiffige Heimexperimente zum eigenständigen Forschen oder Simulationen von komplexen Experimenten, die in der Schule nicht durchführbar sind - wir bieten dir eine abwechslungsreiche Auswahl zum selbstständigen Auswerten und Weiterdenken an. Mit interaktiven Versuchen kannst du die erste Schritte Richtung Nobelpreis zurücklegen.

Mehr erfahren Mehr erfahren

Ausblick

Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.

Mehr erfahren Mehr erfahren

Downloads

Lade unsere Simulationen, Animationen und interaktive Tafelbilder für den Unterricht oder eine Präsentation kostenfrei herunter.

Mehr erfahren Mehr erfahren

Weblinks

Von Cern und NASA über Unterrichtsmaterial bis Videos, unsere Auswahl aus dem World Wide Web. Viel Spaß beim Stöbern.

Mehr erfahren Mehr erfahren