Direkt zum Inhalt
Suchergebnisse 61 - 90 von 303

Potenzielle Energie im Gravitationsfeld

Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Arbeit im Gravitationsfeld

Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben

Gleichmäßig verzögerte Bewegung

Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben

Fundamentale und abgeleitete Kräfte

Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben

Beschreibung von Kräften

Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Kosmische Geschwindigkeiten

Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben
Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Mondfinsternis

Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben

Schräger Wurf nach oben mit Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben

Sonnenfinsternis

Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Masse-Energie-Beziehung

Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel
Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Kreisbewegung

Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel
Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel Zu den Aufgaben

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

3. NEWTONsches Gesetz (Wechselwirkungsprinzip)

Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben

Gravitationsgesetz von NEWTON

Grundwissen

  • Alle Körper üben aufgrund ihrer Massen aufeinander anziehende Kräfte aus, die man als Gravitationskräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungslinie der Schwerpunkte der beiden Körper, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Der Betrag ist proportional zu den Massen der beiden Körper und umgekehrt proportional zum Quadrat des Abstandes ihrer beiden Schwerpunkte. Die Proportionalitätskonstante bezeichnet man als Gravitationskonstante.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper üben aufgrund ihrer Massen aufeinander anziehende Kräfte aus, die man als Gravitationskräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungslinie der Schwerpunkte der beiden Körper, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Der Betrag ist proportional zu den Massen der beiden Körper und umgekehrt proportional zum Quadrat des Abstandes ihrer beiden Schwerpunkte. Die Proportionalitätskonstante bezeichnet man als Gravitationskonstante.

Zum Artikel Zu den Aufgaben

Astronomische Daten unseres Sonnensystems

Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben

Möglichkeiten der Kernfusion

Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel
Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energietransfer

Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben

Stöße

Grundwissen

  • Mit Hilfe der Energie- und Impulserhaltung kannst du Ergebnisse von Stößen vorhersagen.
  • Man unterscheidet gerade und schiefe Stöße.
  • Beim elastischen Stoß ist die Gesamtenergie erhalten, beim unelastischen Stoß nicht.

Zum Artikel
Grundwissen

  • Mit Hilfe der Energie- und Impulserhaltung kannst du Ergebnisse von Stößen vorhersagen.
  • Man unterscheidet gerade und schiefe Stöße.
  • Beim elastischen Stoß ist die Gesamtenergie erhalten, beim unelastischen Stoß nicht.

Zum Artikel Zu den Aufgaben

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Energie und Energieerhaltungssatz

Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Drehmoment

Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel
Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel Zu den Aufgaben

Rotationsenergie

Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben