Direkt zum Inhalt
Suchergebnisse 31 - 60 von 161

Lebensdauer von Myonen

Aufgabe ( Übungsaufgaben )

Myonen wurden 1936 von Carl D. ANDERSON und Seth NEDDERMEYER bei der Untersuchung von kosmischer Strahlung entdeckt. Myonen entstehen in einer Höhe…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Myonen wurden 1936 von Carl D. ANDERSON und Seth NEDDERMEYER bei der Untersuchung von kosmischer Strahlung entdeckt. Myonen entstehen in einer Höhe…

Zur Aufgabe

Flüssigkeitspendel

Aufgabe ( Übungsaufgaben )

Größen HTML5-Canvas nicht unterstützt! // Flüssigkeitspendel (Animation) // 8.9.2022 //…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Größen HTML5-Canvas nicht unterstützt! // Flüssigkeitspendel (Animation) // 8.9.2022 //…

Zur Aufgabe

Beta-Carotin (Abitur BY 2000 LK A3-2)

Aufgabe ( Übungsaufgaben )

In dem organischen Molekül können sich 22 Elektronen praktisch frei entlang einer Kohlenwasserstoffkette bewegen, das Molekül aber nicht verlassen.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

In dem organischen Molekül können sich 22 Elektronen praktisch frei entlang einer Kohlenwasserstoffkette bewegen, das Molekül aber nicht verlassen.…

Zur Aufgabe

Looping mit dem Jaguar

Aufgabe ( Übungsaufgaben )

Im Kölner Stadt-Anzeiger vom 5./6. August 2017 fanden wir im Artikel "Mangelnde Bodenhaftung" über die Geschichte der Autoindustrie die folgenden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Kölner Stadt-Anzeiger vom 5./6. August 2017 fanden wir im Artikel "Mangelnde Bodenhaftung" über die Geschichte der Autoindustrie die folgenden…

Zur Aufgabe

Anregung von Wasserstoff (Abitur BY 2002 GK A3-1)

Aufgabe ( Übungsaufgaben )

Elektronen mit der kinetischen Energie \({E_{{\rm{kin}}}} = 10{,}0\,{\rm{eV}}\) treffen auf ein Gas aus Wasserstoffatomen, die sich zum größeren Teil…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Elektronen mit der kinetischen Energie \({E_{{\rm{kin}}}} = 10{,}0\,{\rm{eV}}\) treffen auf ein Gas aus Wasserstoffatomen, die sich zum größeren Teil…

Zur Aufgabe

Seilwelle

Aufgabe ( Übungsaufgaben )

Mit Hilfe eines Seils lässt sich sehr einfach eine Querwelle (Transversalwelle) erzeugen. Die beiden Diagramme unten zeigen zum einen die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Mit Hilfe eines Seils lässt sich sehr einfach eine Querwelle (Transversalwelle) erzeugen. Die beiden Diagramme unten zeigen zum einen die…

Zur Aufgabe

Baderutsche

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Flugbahn von der Rutsche Ein Kind rutscht im Schwimmbad eine Rutsche hinunter. Es verlässt sie horizontal…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Flugbahn von der Rutsche Ein Kind rutscht im Schwimmbad eine Rutsche hinunter. Es verlässt sie horizontal…

Zur Aufgabe

Arbeit des Herzens

Aufgabe ( Übungsaufgaben )

Clker-Free-Vector-Images auf Pixabay Abb. 1 Vereinfachte Darstellung des Blutkreislaufes im menschlichen Körper. Dein Herz pumpt in…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Clker-Free-Vector-Images auf Pixabay Abb. 1 Vereinfachte Darstellung des Blutkreislaufes im menschlichen Körper. Dein Herz pumpt in…

Zur Aufgabe

Bestimmung des Gleitreibungskoeffizienten

Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau, Durchführung und Beobachtungen des Versuchs zur Bestimmung des Gleitreibungskoeffizienten mit einer schiefene Ebene …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau, Durchführung und Beobachtungen des Versuchs zur Bestimmung des Gleitreibungskoeffizienten mit einer schiefene Ebene …

Zur Aufgabe

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen

Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie

Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Erstellen von Diagrammen

Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel
Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Einführung

Grundwissen
Grundwissen

Schräger Wurf nach oben mit Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

3. NEWTONsches Gesetz (Wechselwirkungsprinzip)

Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energietransfer

Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

1. Newtonsches Gesetz (Trägheitsgesetz)

Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Freier Fall

Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben