Direkt zum Inhalt
Suchergebnisse 91 - 120 von 227

Träge Masse

Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Statische Kraftmessung

Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

HUBBLE-Gesetz

Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben

1. Newtonsches Gesetz (Trägheitsgesetz)

Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben

Strategie beim Lösen von Bewegungsaufgaben

Grundwissen

  • Die NEWTONschen Gesetze ermöglichen die Bewegung eines Körpers in der Zukunft vorherzusagen, wenn Anfangsbedingungen und wirkende Kräfte bekannt sind.
  • Man unterscheidet zwischen drei verschiedenen Fällen der Beschleunigung \(\vec{a}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die NEWTONschen Gesetze ermöglichen die Bewegung eines Körpers in der Zukunft vorherzusagen, wenn Anfangsbedingungen und wirkende Kräfte bekannt sind.
  • Man unterscheidet zwischen drei verschiedenen Fällen der Beschleunigung \(\vec{a}\).

Zum Artikel Zu den Aufgaben

Haft-, Gleit- und Rollreibung

Grundwissen

  • Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung

Zum Artikel Zu den Aufgaben

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Energieerhaltung

Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Leistung

Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Herleitung der Auftriebskraft aus dem Schweredruck

Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben

Auftriebskraft

Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben

Zeit-Ort-Diagramm

Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben

Zeit-Geschwindigkeit-Diagramm

Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegungen

Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegungen

Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben

Freier Fall

Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben

Wurf nach unten

Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Wurf nach oben ohne Anfangshöhe

Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben

Waagerechter Wurf

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit vektoriell

Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung vektoriell

Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel
Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Erzwungene Schwingung

Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben