Direkt zum Inhalt

Grundwissen

Zeit-Ort-Diagramm

Das Wichtigste auf einen Blick

  • Ein Zeit-Ort-Diagramm beschreibt wichtige Teile einer Bewegung.
  • Waagrechte Teile zeigen, dass der Gegenstand zu dieser Zeit ruht.
  • Steigt der Zeit-Orts-Graph so bewegt sich der Gegenstand "vorwärts", fällt der Graph, so bewegt er sich "rückwärts"
Aufgaben Aufgaben

Eindimensionale Bewegung entlang einer Geraden

Zur Vereinfachung werden in diesem Kapitel meist nur eindimensionale Bewegungen betrachtet. Dies bedeutet, dass sich das bewegte Objekt nur längs einer Geraden bewegt.

Messung von Zeit und Ort

Ein Zeit-Orts-Diagramm gibt an, an welchem Ort \(x\) sich eine Gegenstand zum Zeitpunkt \(t\) befindet. Beide Größen kannst du in einem Experiment oft einfach mit einer Uhr und einem Maßband messen. Du notierst dabei in eine Tabelle (vgl. Abb. 1) z.B. zu jeder Sekunde den Ort an dem sich das Auto befindet. So hast du die Bewegung vollständig dokumentiert. Die Tabelle enthält nun die Zeit-Orts-Wertepaare der Bewegung.

Joachim Herz Stiftung
Abb. 1 Möglichkeit zur Messung von Zeit und Ort bei einer Bewegung

Willst du die Bewegung eines Gegenstands wie z.B. eines Modellautos ganz exakt dokumentieren, so kannst du die Bewegung auch filmen. Beim Film wird jedem einzelnen Bild von der in die Kamera bzw. im Smartphone eingebauten Uhr ein Zeitpunkt \(t\) zugeordnet. Den Ort \(x\) des Autos kannst du gut feststellen, wenn die Bewegung vor einem Maßband ablaufen lässt und dieses Maßband mitfilmst.

Zeit-Ort-Tabelle

(die Daten beziehen sich auf die folgende Animation)

t in s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
x in m 20 20 20 20 20 20 23 26 29 32 35 38 41 44 47 50 51 52 53 54 55 56 57 58 59 60 60 60 60 60 60 60 61
t in s 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
x in m 62 64 66 69 72 76 80 85 90 95 99 103 107 111 114 117 120 123 123 123 123 123 123 121 120 119 118 116 115 114 113 111 110

Zeit-Ort-Diagramm

Etwas anschaulicher als in einer Tabelle ist die Darstellung der Bewegung im sogenannten Zeit-Ort-Diagramm. Üblicherweise trägst du die Zeit \(t\) auf der x-Achse (Rechtswertachse) und den Ort \(x\) auf der y-Achse (Hochwertachse) auf.

Merke: Die zuerst genannte Größe kommt auf die horizontale Achse (Rechtswertachse), die zweite genannte Größe auf die vertikale Achse (Hochwertachse). Dies ist auch in der Mathematik üblich, denke z.B. an das \(x\)-\(y\)-Diagramm.

Darstellung einer Bewegung im Zeit-Ort-Diagramm

Abb. 2 Erstellung eines Zeit-Ort-Diagramms aus der Beobachtung einer Bewegung

Hinweis: Völlig "ruckartige" Bewegungsänderungen kommen in der Praxis nicht vor. Dies bedeutet, dass die "Knicke" im Zeit-Orts-Diagramm eigentlich nicht sinnvoll sind. Zugunsten einer einfacheren Darstellung leisten wir uns diese Ungenauigkeit.

Typisches Vorgehen beim Erstellen von Zeit-Ort-Diagrammen

  • Damit der jeweilige Ort des Gegenstands eindeutig festgelegt werden kann, führt man eine Ortsachse ein. Die Richtung der Ortsachse legt man in die (überwiegend) auftretende Bewegungsrichtung.
  • Meist legt man den Nullpunkt der Ortsachse an die Stelle, wo die Bewegung beginnt (dies ist bei der Animation nicht der Fall gewesen).
Erkenntnisse gewinnen aus dem Zeit-Ort-Diagramm
  • Waagrechte Teile des Zeit-Orts-Graphen signalisieren, dass der Gegenstand in dem Zeitintervall ruht (Abschnitte 1, 4 und 7).
  • Steigt der Zeit-Orts-Graph an (positive Geradensteigung, bzw. positive Tangentensteigung bei gekrümmten Graphen), so bewegt sich der Gegenstand "vorwärts" in Richtung der festgelegten Ortsachse (wie in den Abschnitten 2, 3, 5 und 6).
  • Fällt der Zeit-Orts-Graph (negative Geradensteigung, bzw. negative Tangentensteigung bei gekrümmten Graphen), so bewegt sich der Gegenstand "rückwärts" entgegen der Richtung der festgelegten Ortsachse (wie in Abschnitt 8).
  • Je schneller sich der Gegenstand bewegt desto höher ist der Betrag der Steigung des Graphen. Die Steigung im Zeit-Ort-Diagramm ist also ein Maß für die Geschwindigkeit \(v\) des Gegenstands (vergleiche hierzu Abschnitt 2 mit 3).
  • Bei einem gekrümmten Zeit-Ort-Graphen gilt:
    • Nimmt die Steigung mit der Zeit zu, so handelt es sich um eine beschleunigte Bewegung (der Geschwindigkeitsbetrag nimmt zu wie in Abschnitt 5).
    • Nimmt die Steigung mit der Zeit ab, so handelt es sich um eine verzögerte Bewegung (der Geschwindigkeitsbetrag nimmt ab wie in Abschnitt 6).

Achtung: Häufige Fehlvorstellung

Das obige \(t\)-\(x\)-Diagramm verleitet leicht zur falschen Annahme, dass das Auto eine Fahrt über mehrere Gebirgspässe macht und das Diagramm das entsprechende Höhenprofil ist. Tatsächlich führt das Auto eine eindimensionale Bewegung in der Horizontalen aus und die Rechtswertachse ist keine Orts- sondern eine Zeitachse. Ein Höhenprofil müsste in einem \(x\)-\(y\)-Diagramm dargestellt werden. Achte also immer genau darauf, was auf den verschiedenen Achsen für Größen aufgetragen sind.

Aufgaben

Zeit-Ort-Diagramm

Quiz

Übungsaufgaben