Direkt zum Inhalt
Suchergebnisse 241 - 270 von 375

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Reflexion

Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel
Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel Zu den Aufgaben

Vorübungen zur Kräftezerlegung

Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel
Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel Zu den Aufgaben

Dotierte Halbleiter

Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Arbeit als Energieübertrag

Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RL-Kreisen

Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben

DOPPLER-Effekt

Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Schallwellen

Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel
Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben