Direkt zum Inhalt
Suchergebnisse 151 - 180 von 189

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Stromrichtige und Spannungsrichtige Messung

Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben

p-n-Übergang - Halbleiterdiode

Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Fortführung)

Grundwissen

  • Auch drei oder mehr Kräfte können im Gleichgewicht sein.
  • Mehrere Kräfte sind im Gleichgewicht, wenn die schrittweise ermittelte Ersatzkraft aller Kräfte Null ist.

Zum Artikel
Grundwissen

  • Auch drei oder mehr Kräfte können im Gleichgewicht sein.
  • Mehrere Kräfte sind im Gleichgewicht, wenn die schrittweise ermittelte Ersatzkraft aller Kräfte Null ist.

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Einflussfaktoren auf die Schallgeschwindigkeit

Grundwissen

  • Die exakte Schallgeschwindigkeit in Luft hängt von der Temperatur ab
  • Auch die Frequenz hat häufig Einfluss auf die exakte Schallgeschwindigkeit. Dies wird jedoch meist vernachlässigt.
  • Schall breitet sich in unterschiedlichen Medien mit stark unterschiedlichen Geschwindigkeiten aus.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die exakte Schallgeschwindigkeit in Luft hängt von der Temperatur ab
  • Auch die Frequenz hat häufig Einfluss auf die exakte Schallgeschwindigkeit. Dies wird jedoch meist vernachlässigt.
  • Schall breitet sich in unterschiedlichen Medien mit stark unterschiedlichen Geschwindigkeiten aus.

Zum Artikel Zu den Aufgaben

Interferenz von Schallwellen

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Es kann an mehreren Orten konstruktive bzw. destruktive Interferenz auftreten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Es kann an mehreren Orten konstruktive bzw. destruktive Interferenz auftreten.

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel
Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel Zu den Aufgaben

Gravitation - Ursache der Gewichtskraft

Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel
Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Kombination von Federn oder Gummis

Grundwissen

  • Sind mehrere Federn nebeneinander platziert, also parallel "geschaltet", so addieren sie die einzelnen Federkonstanten zu einer höheren Gesamtfederkonstanten auf.
  • Sind mehrere Federn aneinandergehängt, so ergibt sich eine Gesamtfederkonstante, die kleiner ist als die kleinste Federkonstante einer einzelnen Feder. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Sind mehrere Federn nebeneinander platziert, also parallel "geschaltet", so addieren sie die einzelnen Federkonstanten zu einer höheren Gesamtfederkonstanten auf.
  • Sind mehrere Federn aneinandergehängt, so ergibt sich eine Gesamtfederkonstante, die kleiner ist als die kleinste Federkonstante einer einzelnen Feder. 

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Luftdruck

Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben

Gekoppelte Pendel

Grundwissen

  • Bei zwei schwach gekoppelten Pendeln wird die Schwingungsenergie zwischen den beiden Teilsystemen hin und her übertragen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei schwach gekoppelten Pendeln wird die Schwingungsenergie zwischen den beiden Teilsystemen hin und her übertragen.

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Zusammenhang der Diagramme

Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel
Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel Zu den Aufgaben

Periodische Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Gezeiten

Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel
Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Gravitationskraft

Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Energieentwertung durch Reibung

Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben