Direkt zum Inhalt
Suchergebnisse 151 - 180 von 217

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Schweredruck

Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Umrechnen von Einheiten der Kraft

Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel Zu den Aufgaben

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Mittlere und Momentanbeschleunigung

Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Geschwindigkeit und Beschleunigung vektoriell

Grundwissen

  • Man unterscheidet zwischen gerichteten Größen (Vektoren) und ungerichteten Größen (Skalaren).
  • Im eindimensionalen Fall berücksichtigt man die Richtung eines Vektors durch das Vorzeichen des Skalars
  • Die festgelegte positive Richtung der Ortsachse beeinflusst die Richtung der anderen Vektoren maßgeblich

Zum Artikel
Grundwissen

  • Man unterscheidet zwischen gerichteten Größen (Vektoren) und ungerichteten Größen (Skalaren).
  • Im eindimensionalen Fall berücksichtigt man die Richtung eines Vektors durch das Vorzeichen des Skalars
  • Die festgelegte positive Richtung der Ortsachse beeinflusst die Richtung der anderen Vektoren maßgeblich

Zum Artikel Zu den Aufgaben

Trägheitssatz im beschleunigten System

Grundwissen

  • Außenstehende Beobachter und mitbeschleunigte Beobachter nehmen Situationen anders war.
  • Für mitbeschleunigte Beobachter treten sog. Scheinkräfte, wie die Trägheitskraft auf.

Zum Artikel
Grundwissen

  • Außenstehende Beobachter und mitbeschleunigte Beobachter nehmen Situationen anders war.
  • Für mitbeschleunigte Beobachter treten sog. Scheinkräfte, wie die Trägheitskraft auf.

Zum Artikel Zu den Aufgaben

Fadenpendel

Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Geometrie der Ellipse

Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel
Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel Zu den Aufgaben