Direkt zum Inhalt
Suchergebnisse 151 - 180 von 226

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Gravitation - Ursache der Gewichtskraft

Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel
Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Kombination von Federn oder Gummis

Grundwissen

  • Sind mehrere Federn nebeneinander platziert, also parallel "geschaltet", so addieren sie die einzelnen Federkonstanten zu einer höheren Gesamtfederkonstanten auf.
  • Sind mehrere Federn aneinandergehängt, so ergibt sich eine Gesamtfederkonstante, die kleiner ist als die kleinste Federkonstante einer einzelnen Feder. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Sind mehrere Federn nebeneinander platziert, also parallel "geschaltet", so addieren sie die einzelnen Federkonstanten zu einer höheren Gesamtfederkonstanten auf.
  • Sind mehrere Federn aneinandergehängt, so ergibt sich eine Gesamtfederkonstante, die kleiner ist als die kleinste Federkonstante einer einzelnen Feder. 

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Luftdruck

Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben

Streuversuch und Atommodell von RUTHERFORD

Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im RUTHERFORDschen Streuversuch wird eine dünne Metallfolie mit \(\alpha\)-Teilchen (positiv geladen) beschossen.
  • Entgegen den Erwartungen werden einige wenige \(\alpha\)-Teilchen von der Folie sogar zurückgestreut.
  • Das Modell von RUTHERFORD führt den sehr kleinen, positiv geladenen Atomkern ein, in dem fast die gesamte Masse des Atoms vereinigt ist.
  • Das Modell kann nicht erklären, warum die Elektronen nicht in den Kern stürzen und wie diskrete Spektrallinien zustande kommen.

Zum Artikel Zu den Aufgaben

Gekoppelte Pendel

Grundwissen

  • Bei zwei schwach gekoppelten Pendeln wird die Schwingungsenergie zwischen den beiden Teilsystemen hin und her übertragen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei schwach gekoppelten Pendeln wird die Schwingungsenergie zwischen den beiden Teilsystemen hin und her übertragen.

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Zusammenhang der Diagramme

Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel
Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel Zu den Aufgaben

Periodische Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung kehrt ein Körper nach gleichlangen Zeitabschnitten immer wieder in den gleichen Bewegungszustand zurück.
  • Periodische Bewegungen um eine stabile Gleichgewichtslage herum, nennt man Schwingungen.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch (Resonanz-)Absorption von Photonen

Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch Stoßanregung

Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Exotische Atome

Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben

RYDBERG-Atome

Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Gezeiten

Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel
Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben