Direkt zum Inhalt
Suchergebnisse 91 - 120 von 260

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Wärmewirkung des elektrischen Stroms

Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben

Chemische Wirkung des elektrischen Stroms

Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben

Magnetfeld und Feldlinien

Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel
Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel Zu den Aufgaben

Fadenpendel

Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Botenteilchen

Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Einfache Stromkreise

Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Elektromotor

Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben

Elektrische Verschiebungsdichte

Versuche
Versuche

Wiegen im Vakuum

Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel
Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel Zu den Aufgaben

Rollen

Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel
Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel Zu den Aufgaben

Abflachung der Erde

Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel
Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel Zu den Aufgaben

Rotierende Kerze

Versuche
Versuche

Stehende Querwellen

Versuche
Versuche

Wärmeleitung in Flüssigkeiten

Versuche

Mit dem Versuch wollen wir zeigen, dass Flüssigkeiten meist schlechte Wärmeleiter sind.

Zum Artikel
Versuche

Mit dem Versuch wollen wir zeigen, dass Flüssigkeiten meist schlechte Wärmeleiter sind.

Zum Artikel Zu den Aufgaben

Wärmeleitung in Gasen

Versuche

  • Nachweis, dass Gase sehr schlechte Wärmeleiter sind.

Zum Artikel
Versuche

  • Nachweis, dass Gase sehr schlechte Wärmeleiter sind.

Zum Artikel Zu den Aufgaben

Cartesischer Taucher

Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel
Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel Zu den Aufgaben