Direkt zum Inhalt
Suchergebnisse 91 - 120 von 220

Reflexionsgesetz

Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben
Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben

Zeit-Ort-Diagramm

Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben

Zeit-Geschwindigkeit-Diagramm

Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegungen

Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegungen

Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben

Freier Fall

Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben

Wurf nach unten

Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Wurf nach oben ohne Anfangshöhe

Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben

Waagerechter Wurf

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit vektoriell

Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung vektoriell

Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel
Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Erzwungene Schwingung

Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Einführung

Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben

Linsenformen

Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel
Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel Zu den Aufgaben

Begriffe bei der Linsenabbildung

Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben

Radiowellen

Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel Zu den Aufgaben

Licht als Welle

Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben

Zwei-Quellen-Interferenz

Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel
Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel Zu den Aufgaben

Vielfachspalt und Gitter

Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Harmonische Schwingungen

Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben

Festlegung der Dichte

Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben

Einheiten der Dichte umrechnen

Grundwissen

  • Ein physikalische Größe wie \(800\,\rm{\frac{kg}{m^3}}\) kannst du als Produkt eines Zahlenwert und einer Einheit verstehen
  • Du kannst ein physikalische Größe in verschiedenen Einheiten angegeben
  • Du kannst die Einheit einer physikalischen Größe in eine andere umrechnen, z.B. \(\rm{\frac{kg}{m^3}}\) in \(\rm{\frac{g}{m^3}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein physikalische Größe wie \(800\,\rm{\frac{kg}{m^3}}\) kannst du als Produkt eines Zahlenwert und einer Einheit verstehen
  • Du kannst ein physikalische Größe in verschiedenen Einheiten angegeben
  • Du kannst die Einheit einer physikalischen Größe in eine andere umrechnen, z.B. \(\rm{\frac{kg}{m^3}}\) in \(\rm{\frac{g}{m^3}}\)

Zum Artikel Zu den Aufgaben

Trigonometrische Funktionen (Sinus- und Cosinus)

Grundwissen

  • Harmonische Schwingungen können mit der allgemeinen Sinusfunktion \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t + \varphi_0 } \right)\) oder der allgemeinen Cosinusfunktion \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t + \varphi_0 } \right)\) beschrieben werden.
  • Dabei ist \( \hat y\) die Amplitude und \(\omega\) die Kreisfrequenz der Schwingung.
  • \(\varphi_0\) gibt die Phasenverschiebung an, die im schulischen Kontext oft Null ist.

Zum Artikel
Grundwissen

  • Harmonische Schwingungen können mit der allgemeinen Sinusfunktion \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t + \varphi_0 } \right)\) oder der allgemeinen Cosinusfunktion \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t + \varphi_0 } \right)\) beschrieben werden.
  • Dabei ist \( \hat y\) die Amplitude und \(\omega\) die Kreisfrequenz der Schwingung.
  • \(\varphi_0\) gibt die Phasenverschiebung an, die im schulischen Kontext oft Null ist.

Zum Artikel Zu den Aufgaben

Reflexion

Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel
Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel Zu den Aufgaben