Eine wichtige Sonderform der Schwingung ist die harmonischen Schwingung. Die harmonische Schwingung, die manchmal etwas salopp auch als Sinusschwingung bezeichnet wird, verläuft nicht nur periodisch und besitzt eine eindeutige Gleichgewichtslage, sondern erfüllt noch eine weitere Bedingung:
Definition der harmonischen Schwingung
Eine Schwingung heißt harmonische Schwingung, wenn sie eine der folgenden Bedingungen erfüllt.
- Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer Kreisbewegung überein (und kann somit durch eine Sinus- oder Kosinusfunktion, z.B. mit \(y(t) = \hat y \cdot \sin \left( {\omega \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega \cdot t} \right)\), abhängig von den Ausgangsbedingungen, beschrieben werden).
- Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}}(y) = - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie stets auch die andere.
Typische Beispiele
Harmonische Schwingungen werden (zumindest bei kleinen Auslenkungen) von einem Federpendel, einem Feder-Schwere-Pendel oder einem Fadenpendel ausgeführt. Exaktere Überlegungen hierzu findest du in den entsprechenden Artikeln.
Bewegungsgesetze der Harmonischen Schwingung
Der Einfachheit halber beschreibt man in der Schule meist eine harmonische Schwingung, die beim Phasenwinkel \(\varphi = 0\) startet. Dies bedeutet, dass sich der Körper zum Zeitpunkt \(t=0\) in der Ruhelage befindet bzw. seine Kreisbewegung beim Winkel \(\varphi = 0\) startet und sich in die mathematisch positive Richtung dreht (Gegenuhrzeigersinn) bewegt.
Zeit-Orts-Gesetz \[y(t) = \hat y \cdot \sin \left( {\omega \cdot t} \right)\]Zeit-Geschwindigkeits-Gesetz\[v(t) = \hat v \cdot \cos \left( {\omega \cdot t} \right) \Rightarrow v(t) = \hat y \cdot \omega \cdot \cos \left( {\omega \cdot t} \right)\]Zeit-Beschleunigungs-Gesetz\[a(t) = - \hat a \cdot \sin \left( {\omega \cdot t} \right) \Rightarrow a(t) = - \hat y \cdot {\omega ^2} \cdot \sin \left( {\omega \cdot t} \right)\]
Bewegungsdiagramme
Entsprechend der drei Bewegungsgesetze kann eine harmonische Schwingung auch in Diagrammform dargestellt werden. Abb. 1 zeigt den einfachsten Fall in dem die Bewegung zum Zeitpunkt \(t=0\) am Ort \(y(t)=0\) ist. Weiter ist die Periodendauer der Bewegung im Diagramm \(T=2\pi\), sodass \(\omega=1\) gilt.
Du kannst erkennen, dass das Zeit-Geschwindigkeits-Diagramm gegenüber dem Zeit-Orts-Diagramm genau um \(\frac{3}{2}\pi\) nach rechts verschoben ist. Das Zeit-Beschleunigungs-Diagramm ist gegenüber dem Zeit-Orts-Diagramm um genau \(\pi\) verschoben.
Diese Verschiebungen treten allgemein auf, unabhängig von der Periodendauer \(T\) und dem Startzeitpunkt der harmonischen Schwingung.
Allgemeiner Fall mit beliebigem Startpunkt
Für den allgemeineren Fall, in dem sich der Körper zur Zeit \(t = 0\) bei der Kreisbewegung schon bei einem Winkel \(\varphi \ne 0\) befindet, wird die Beschreibung etwas komplizierter. Hier musst du die Phasenverschiebung \(\varphi\) im Argument von Sinus bzw. Kosinus in allen drei Gesetzmäßigkeiten berücksichtigen.
Zeit-Orts-Gesetz\[y(t) = \hat y \cdot \sin \left( {\omega \cdot t + \varphi } \right)\]Zeit-Geschwindigkeits-Gesetz\[v(t) = \dot y(t) = \hat y \cdot \omega \cdot \cos \left( {\omega \cdot t + \varphi } \right) = \hat v \cdot \cos \left( {\omega \cdot t + \varphi } \right)\]Zeit-Beschleunigungs-Gesetz\[a(t) = \dot v(t) = \ddot y(t) = - \hat y \cdot {\omega ^2} \cdot \sin \left( {\omega \cdot t + \varphi } \right) = - \hat a \cdot \sin \left( {\omega \cdot t + \varphi } \right)\]