Direkt zum Inhalt
Suchergebnisse 1 - 30 von 46

Experiment von BUCHERER (Abitur BY 2021 Ph 11-1 A1)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze der VersuchsanordnungMit der abgebildeten evakuierten Anordnung (Abb. 1) wird die Ablenkung von Elektronen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze der VersuchsanordnungMit der abgebildeten evakuierten Anordnung (Abb. 1) wird die Ablenkung von Elektronen…

Zur Aufgabe

Anregung eines Atoms durch Absorption

Aufgabe ( Übungsaufgaben )

swiffyobject_6518=…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

swiffyobject_6518=…

Zur Aufgabe

Positronium-Spektrum

Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(\rm{e}^+\) zum Elektron heißt Positron. Trifft ein langsames Positron auf ein Elektron eines Festkörpers, so kann es passieren,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(\rm{e}^+\) zum Elektron heißt Positron. Trifft ein langsames Positron auf ein Elektron eines Festkörpers, so kann es passieren,…

Zur Aufgabe

Spektrallinien von atomarem Wasserstoff

Aufgabe ( Übungsaufgaben )

Beim Wasserstoffatom gibt es über dem Niveau \(E_1 = -13{,}6\,\rm{eV}\) des Grundzustands unter anderem die Niveaus \(E_2 = -3{,}4\,\rm{eV}\), \(E_3=…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Beim Wasserstoffatom gibt es über dem Niveau \(E_1 = -13{,}6\,\rm{eV}\) des Grundzustands unter anderem die Niveaus \(E_2 = -3{,}4\,\rm{eV}\), \(E_3=…

Zur Aufgabe

Spektralanalyse (Abitur BY 2004 GK A2-2)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 VersuchsaufbauMit dem skizzierten Versuchsaufbau soll das Spektrum einer Glühlampe untersucht werden. Der von der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 VersuchsaufbauMit dem skizzierten Versuchsaufbau soll das Spektrum einer Glühlampe untersucht werden. Der von der…

Zur Aufgabe

Kristallographie (Abitur BY 2009 LK A2-3)

Aufgabe ( Übungsaufgaben )

Zur Bestimmung der Netzebenenabstände von Kristallen wird ein Kristallpulver mit monochromatischer Röntgenstrahlung der Wellenlänge \({37{\rm{pm}}}\)…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zur Bestimmung der Netzebenenabstände von Kristallen wird ein Kristallpulver mit monochromatischer Röntgenstrahlung der Wellenlänge \({37{\rm{pm}}}\)…

Zur Aufgabe

Eine Fahrt zu Alpha Centauri

Aufgabe ( Übungsaufgaben )

CC-BY 4.0 ESO/Digitized Sky Survey 2 Abb. 1 Teleskopaufnahme des Sternensystems \(\alpha\)-Centauri.Das unserer Sonne nächstgelegene…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

CC-BY 4.0 ESO/Digitized Sky Survey 2 Abb. 1 Teleskopaufnahme des Sternensystems \(\alpha\)-Centauri.Das unserer Sonne nächstgelegene…

Zur Aufgabe

Zwillingsbruder auf Reisen (Zwillingsparadoxon)

Aufgabe ( Übungsaufgaben )

Auf einer Weltraumreise fährt Astronaut Max mit der Geschwindigkeit \(0{,}60\cdot c\) in Bezug zur Erde, wo sein Zwillingsbruder Sepp zurückbleibt.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einer Weltraumreise fährt Astronaut Max mit der Geschwindigkeit \(0{,}60\cdot c\) in Bezug zur Erde, wo sein Zwillingsbruder Sepp zurückbleibt.…

Zur Aufgabe

Sichtbares Spektrum von atomarem Wasserstoff

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Energiestufen im atomaren WasserstoffDie nebenstehende Abbildung zeigt die Energiestufen im atomaren Wasserstoff.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Energiestufen im atomaren WasserstoffDie nebenstehende Abbildung zeigt die Energiestufen im atomaren Wasserstoff.…

Zur Aufgabe

Spektrallinien von einfach ionisiertem Helium

Aufgabe ( Übungsaufgaben )

Ein einfach ionisiertes Heliumatom \({\rm{He}}^+\) wird zum Leuchten angeregt. Dabei kann man Photonen mit den Energien \(2{,}6\,\rm{eV}\),…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein einfach ionisiertes Heliumatom \({\rm{He}}^+\) wird zum Leuchten angeregt. Dabei kann man Photonen mit den Energien \(2{,}6\,\rm{eV}\),…

Zur Aufgabe

Plasmakugel (Abitur BY 2010 LK A3-2)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Plasmakugel Joachim Herz Stiftung Abb.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Plasmakugel Joachim Herz Stiftung Abb.…

Zur Aufgabe

Anregung von Neon-Atomen (Abitur BY 2005 LK A3-2)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze des ExperimentsZur experimentellen Bestimmung der Energiestufen von Neon wird ein FRANCK-HERTZ-Rohr mit…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze des ExperimentsZur experimentellen Bestimmung der Energiestufen von Neon wird ein FRANCK-HERTZ-Rohr mit…

Zur Aufgabe

FRANCK-HERTZ-Versuch (Abitur BY 2006 GK A3-1)

Aufgabe ( Übungsaufgaben )

Im Jahr 1925 wurden die deutschen Physiker James FRANCK (1882 - 1964) und Gustav HERTZ (1887 - 1975) für ihre experimentellen Forschungen auf dem…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Jahr 1925 wurden die deutschen Physiker James FRANCK (1882 - 1964) und Gustav HERTZ (1887 - 1975) für ihre experimentellen Forschungen auf dem…

Zur Aufgabe

h-Bestimmung mit RÖNTGEN-Strahlung (Abitur BY 2005 GK A3-3)

Aufgabe ( Übungsaufgaben )

a) Unknown author, Public domain, via…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Unknown author, Public domain, via…

Zur Aufgabe

Positronium-Atom (Abitur BY 2014 Ph12-2 A2)

Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(e^+\) zum Elektron heißt Positron. Als Positronen-Quelle für Experimente wird häufig der β+-Strahler \({}^{22}{\rm{Na}}\)…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(e^+\) zum Elektron heißt Positron. Als Positronen-Quelle für Experimente wird häufig der β+-Strahler \({}^{22}{\rm{Na}}\)…

Zur Aufgabe

RYDBERG-Atome (Abitur BY 2004 GK A3-2)

Aufgabe ( Übungsaufgaben )

Atome, die sich in sehr hoch angeregten Zuständen befinden, werden als RYDBERG-Atome bezeichnet. Durch radioastronomische Beobachtungen wurden im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Atome, die sich in sehr hoch angeregten Zuständen befinden, werden als RYDBERG-Atome bezeichnet. Durch radioastronomische Beobachtungen wurden im…

Zur Aufgabe

Eindimensionaler Potentialtopf (Abitur BY 2007 GK A3-2)

Aufgabe ( Übungsaufgaben )

Das Zustandekommen von diskreten Energieniveaus (charakterisiert durch die Quantenzahl n) für ein in der Atomhülle gebundenes Elektron kann am Modell…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Zustandekommen von diskreten Energieniveaus (charakterisiert durch die Quantenzahl n) für ein in der Atomhülle gebundenes Elektron kann am Modell…

Zur Aufgabe

Hochleistungs-Rubinlaser

Aufgabe ( Übungsaufgaben )

US gov, Public domain, via Wikimedia Commons, Beschriftungen von LEIFIphysik Abb. 1 RubinlaserWährend die kontinuierlich arbeitenden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

US gov, Public domain, via Wikimedia Commons, Beschriftungen von LEIFIphysik Abb. 1 RubinlaserWährend die kontinuierlich arbeitenden…

Zur Aufgabe

Kohlendioxid-Laser (Abitur BY 2011 LK A3-2)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 EnergieniveauschemaUm bei einem mit Kohlendioxid (\(\rm{CO}_2\)) betriebenen Laser die \(\rm{CO}_2\)-Moleküle aus…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 EnergieniveauschemaUm bei einem mit Kohlendioxid (\(\rm{CO}_2\)) betriebenen Laser die \(\rm{CO}_2\)-Moleküle aus…

Zur Aufgabe

Spektren

Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel
Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

Atomare Größen

Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben