Direkt zum Inhalt
Suchergebnisse 1 - 30 von 100

Physik des Fliegens

Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Wiegen im Weltall mittels SLAMMD

Ausblick
Ausblick

Theoretische Herleitung der Formel für die kinetische Energie

Ausblick

  • Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
  • Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).

Zum Artikel Zu den Aufgaben
Ausblick

  • Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
  • Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

HERTZSPRUNG-RUSSELL-Diagramm

Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Stehende Wellen und Eigenschwingungen

Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben