Direkt zum Inhalt
Suchergebnisse 151 - 180 von 373

Federpendel gedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Modellbildung)

Ausblick
Ausblick

Feder-Schwere-Pendel gedämpft (Modellbildung)

Ausblick
Ausblick

Kommunizierende Röhren im Alltag

Ausblick
Ausblick

Wurf nach unten (Modellbildung)

Ausblick
Ausblick

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Präzession und Nutation

Ausblick
Ausblick

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Effektives Potential

Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel
Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel Zu den Aufgaben

Herleitung des ersten KEPLERschen Gesetzes

Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel
Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des zweiten KEPLERschen Gesetzes

Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel
Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des dritten KEPLERschen Gesetzes

Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel
Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel Zu den Aufgaben

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

PRANDTL-Rohr

Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Zeitmessung mit Hilfe eines Fadenpendels

Weblink

Ein kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Ein kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink

Kräfte in Atomen und Kraftzerlegung im Kampfsport

Weblink

Nach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Nach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Kraftzerlegung beim Kirchenbau, im Kampfsport und in Brücken

Weblink

In diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

In diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Newtonsche Axiome

Weblink

Die drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Die drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Geschwindigkeit, Beschleunigung und Impuls

Weblink

Dieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink