Direkt zum Inhalt
Suchergebnisse 31 - 60 von 157

Ladungseigenschaften

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Stehende Wellen und Eigenschwingungen

Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Kreisbewegung

Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel
Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben