Direkt zum Inhalt
Suchergebnisse 61 - 90 von 99

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Wechselwirkungen

Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel
Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel Zu den Aufgaben

Elektromagnetische Wechselwirkung

Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel
Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel
Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel Zu den Aufgaben

Gravitation - Ursache der Gewichtskraft

Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel
Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel Zu den Aufgaben

Luftdruck

Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben

Zusammenhang der Diagramme

Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel
Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel Zu den Aufgaben

Druckmessungen am Profil

Versuche
Versuche

Impulsänderung der Luft

Versuche
Versuche

Dehnung eines Drahtes

Versuche

  • Untersuchung der Dehnung eines Drahtes

Zum Artikel
Versuche

  • Untersuchung der Dehnung eines Drahtes

Zum Artikel Zu den Aufgaben

Wurfparabel

Versuche

Mit diesem Versuch kannst du zeigen, dass die Bahnkurven des waagerechten und des schrägen Wurfs Parabeln sind.

Zum Artikel
Versuche

Mit diesem Versuch kannst du zeigen, dass die Bahnkurven des waagerechten und des schrägen Wurfs Parabeln sind.

Zum Artikel Zu den Aufgaben

Fadenpendel

Versuche

  • Mit diesem Versuch lässt sich die Abhängigkeit der Schwingungsdauer eines Fadenpendels von der Anfangsauslenkung und von der Masse des Pendelkörpers untersuchen

Zum Artikel
Versuche

  • Mit diesem Versuch lässt sich die Abhängigkeit der Schwingungsdauer eines Fadenpendels von der Anfangsauslenkung und von der Masse des Pendelkörpers untersuchen

Zum Artikel Zu den Aufgaben

BOYLE-MARIOTTE (Selbstbau)

Versuche
Versuche

Brauchen wir die Kernfusion - Video

Versuche
Versuche

Warum fällt der Mond nicht auf die Erde?

Versuche
Versuche

Verdampfen von Wasser - Fortführung

Versuche
Versuche

Bau einer Panflöte

Versuche
Versuche

Zweiquelleninterferenz von Schall

Versuche

  • Konstruktive und destruktive Interferenz von Schallwellen erfahrbar machen
  • Gesetzmäßigkeiten der destruktiven Interferenz quantitativ bestätigen

Zum Artikel
Versuche

  • Konstruktive und destruktive Interferenz von Schallwellen erfahrbar machen
  • Gesetzmäßigkeiten der destruktiven Interferenz quantitativ bestätigen

Zum Artikel Zu den Aufgaben

Arbeit an der schiefen Ebene

Versuche
Versuche

Betrag der Zentripetalkraft

Versuche

  • Untersuchung der Abhängigkeiten von \(m\), \(r\) und \(\omega\) auf die Zentripetalkraft \(F_{\rm{ZP}}\)
  • Übung des Auswertens von Messdaten
  • Herleitung der Formel für die Zentripetalkraft \(F_{\rm{ZP}}=m\cdot \omega^2\cdot r\)

Zum Artikel
Versuche

  • Untersuchung der Abhängigkeiten von \(m\), \(r\) und \(\omega\) auf die Zentripetalkraft \(F_{\rm{ZP}}\)
  • Übung des Auswertens von Messdaten
  • Herleitung der Formel für die Zentripetalkraft \(F_{\rm{ZP}}=m\cdot \omega^2\cdot r\)

Zum Artikel Zu den Aufgaben

Absorption von ß-Strahlung in Luft

Versuche

  • Bestätigung des Abstandsgesetzes für (harte) \(\beta\)-Strahlung

Zum Artikel
Versuche

  • Bestätigung des Abstandsgesetzes für (harte) \(\beta\)-Strahlung

Zum Artikel Zu den Aufgaben

Absorption von ß-Strahlung in Aluminium

Versuche
Versuche

Absorption von Gammastrahlung in Materie

Versuche
Versuche

Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Versuche

  • Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Zum Artikel
Versuche

  • Bestimmung der Halbwertszeit von \({}^{220}{\rm{Rn}}\)

Zum Artikel Zu den Aufgaben