Direkt zum Inhalt
Suchergebnisse 31 - 60 von 114

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben

Harmonische Schwingungen

Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Fadenpendel

Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Wiegen im Vakuum

Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel
Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel Zu den Aufgaben

Rollen

Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel
Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel Zu den Aufgaben

Abflachung der Erde

Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel
Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel Zu den Aufgaben

Rotierende Kerze

Versuche
Versuche

Stehende Querwellen

Versuche
Versuche

Cartesischer Taucher

Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel
Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel Zu den Aufgaben

Der Transistor als Schalter

Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel
Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel Zu den Aufgaben

Video zum Flaschenzug

Versuche
Versuche

Auswerten eines Films zum freien Fall

Versuche
Versuche