Direkt zum Inhalt
Suchergebnisse 961 - 990 von 1101

Entstehung von Erdbeben

Ausblick
Ausblick

Häufigkeit von Erdbeben

Ausblick
Ausblick

Seismische Wellen

Ausblick
Ausblick

Fallturm und Parabelflug

Ausblick
Ausblick

Feder-Schwere-Pendel ungedämpft (Modellbildung)

Ausblick
Ausblick

Erklärung der Brechung durch das Prinzip von HUYGENS

Ausblick
Ausblick

Erklärung der Reflexion durch das Prinzip von HUYGENS

Ausblick
Ausblick

Federpendel ungedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Modellbildung)

Ausblick
Ausblick

Feder-Schwere-Pendel gedämpft (Modellbildung)

Ausblick
Ausblick

Kommunizierende Röhren im Alltag

Ausblick
Ausblick

Wurf nach unten (Modellbildung)

Ausblick
Ausblick

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Raser auf der Autobahn

Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe

Kran aus der Römerzeit

Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe

Die ATWOODsche Fallmaschine

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe

Gleitschlitten ohne Reibung

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe

Gleitschlitten mit Reibung

Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe

Energieerhaltung beim freien Fall

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe