Direkt zum Inhalt
Suchergebnisse 211 - 240 von 2323

Quiz zur THOMSONschen Schwingungsgleichung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Strom, Spannung und Widerstand im Alltag

Aufgabe ( Einstiegsaufgaben )

Die Begriffe Strom, Spannung und Widerstand werden nicht nur beim Sprechen über Elektrizität(slehre) benutzt. Du verwendest sie im Alltag und weißt…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Die Begriffe Strom, Spannung und Widerstand werden nicht nur beim Sprechen über Elektrizität(slehre) benutzt. Du verwendest sie im Alltag und weißt…

Zur Aufgabe

Länge der Blende (Auswertung von zwei Teilversuchen)

Aufgabe ( Übungsaufgaben )

Abb. 1 Gleichförmige Bewegung (Luftkissenschiene) (© 2007, AG Didaktik der Physik, DOPPLER-Projekt, Freie Universität Berlin)) Ein Gleiter mit einer…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Gleichförmige Bewegung (Luftkissenschiene) (© 2007, AG Didaktik der Physik, DOPPLER-Projekt, Freie Universität Berlin)) Ein Gleiter mit einer…

Zur Aufgabe

Stromkreis in der Deckenlampe

Aufgabe ( Übungsaufgaben )

Nur wenn Strom durch den Draht einer Glühlampe fließt, kann die Glühlampe leuchten. Dafür muss der Stromkreis, in welchem die Lampe eingebaut ist,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Nur wenn Strom durch den Draht einer Glühlampe fließt, kann die Glühlampe leuchten. Dafür muss der Stromkreis, in welchem die Lampe eingebaut ist,…

Zur Aufgabe

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Aufladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Einschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Ausschalten eines Stromkreises mit einer Spule (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel
Versuche

  • Der Versuch soll zwei Verschiedene Methoden zur Ermittlung der Beschleunigung einer gleichmäßig beschleunigten Bewegung ermöglichen

Zum Artikel Zu den Aufgaben

\(\frac{e}{m_{\rm{e}}}\)-Bestimmung mit dem WIENschen Geschwindigkeitsfilter

Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel
Versuche

  • Bestimmung der spezifischen Ladung \(\frac{e}{m_{\rm{e}}}\) von Elektronen mit einem WIENschen Geschwindigkeitsfilter

Zum Artikel Zu den Aufgaben

Versuch zur Untersuchung der Zentripetalkraft

Aufgabe ( Übungsaufgaben )

Beschreibe anhand einer Skizze den Aufbau und die Funktionsweise eines Versuch, mit dem die Einflüsse der Masse \(m\), der Winkelgeschwindigkeit…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Beschreibe anhand einer Skizze den Aufbau und die Funktionsweise eines Versuch, mit dem die Einflüsse der Masse \(m\), der Winkelgeschwindigkeit…

Zur Aufgabe

Betrag der Zentripetalbeschleunigung (Smartphone-Experiment mit phyphox)

Versuche

  • Untersuchung/Bestätigung der Abhängigkeit des Betrags der Zentripetalbeschleunigung von der Winkelgeschwindigkeit und dem Bahnradius.
  • Möglichkeiten für Experimente mit Alltagsgegenständen aufzeigen.

Zum Artikel
Versuche

  • Untersuchung/Bestätigung der Abhängigkeit des Betrags der Zentripetalbeschleunigung von der Winkelgeschwindigkeit und dem Bahnradius.
  • Möglichkeiten für Experimente mit Alltagsgegenständen aufzeigen.

Zum Artikel Zu den Aufgaben

Schräger Wurf (Simulation mit GeoGebra)

Versuche
Versuche

Federschwingung mit Ultraschallsensor

Versuche

  • Bewegungsdiagramm von Federschwingungen aufnehmen
  • Zusammenhänge zwischen Zeit-Orts-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungs-Diagrammen veranschaulichen

Zum Artikel
Versuche

  • Bewegungsdiagramm von Federschwingungen aufnehmen
  • Zusammenhänge zwischen Zeit-Orts-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungs-Diagrammen veranschaulichen

Zum Artikel Zu den Aufgaben

Potentiometerschaltung unbelastet (Simulation)

Versuche
Versuche

Fläche oder Volumen?

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Haftreibung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Haftreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{HR,max}} = \mu_{\rm{HR}} \cdot F_{\rm{N}}\) nach einer…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Haftreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{HR,max}} = \mu_{\rm{HR}} \cdot F_{\rm{N}}\) nach einer…

Zur Aufgabe

Gleitreibung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Gleitreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{GR}} = \mu_{\rm{GR}} \cdot F_{\rm{N}}\) nach einer unbekannten…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Gleitreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{GR}} = \mu_{\rm{GR}} \cdot F_{\rm{N}}\) nach einer unbekannten…

Zur Aufgabe

Rollreibung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Rollreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{RR}} = \mu_{\rm{RR}} \cdot F_{\rm{N}}\) nach einer unbekannten…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Rollreibung zu lösen, musst du häufig die Gleichung \(F_{\rm{RR}} = \mu_{\rm{RR}} \cdot F_{\rm{N}}\) nach einer unbekannten…

Zur Aufgabe

Auftriebskraft - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Auftriebskraft zu lösen, musst du häufig die Gleichung \(F_{\rm{A}} = \rho \cdot V \cdot g\) nach einer unbekannten Größe…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Auftriebskraft zu lösen, musst du häufig die Gleichung \(F_{\rm{A}} = \rho \cdot V \cdot g\) nach einer unbekannten Größe…

Zur Aufgabe

Spannungsteiler unbelastet

Aufgabe ( Erarbeitungsaufgaben )

Joachim Herz Stiftung Abb. 1 Schaltplan eines (unbelasteten) SpannungsteilersIn Abb. 1 siehst du den Schaltplan eines (unbelasteten)…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Joachim Herz Stiftung Abb. 1 Schaltplan eines (unbelasteten) SpannungsteilersIn Abb. 1 siehst du den Schaltplan eines (unbelasteten)…

Zur Aufgabe

Spannungsteiler belastet

Aufgabe ( Erarbeitungsaufgaben )

Joachim Herz Stiftung Abb. 1 Schaltplan eines belasteten SpannungsteilersIn Abb. 1 siehst du den Schaltplan eines belasteten…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Joachim Herz Stiftung Abb. 1 Schaltplan eines belasteten SpannungsteilersIn Abb. 1 siehst du den Schaltplan eines belasteten…

Zur Aufgabe