Direkt zum Inhalt
Suchergebnisse 331 - 360 von 1097

Größen, Basisgrößen und abgeleitete Größen

Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Umgang mit dem Taschenrechner

Grundwissen
Grundwissen

Modell der Elementarmagnete

Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel
Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel Zu den Aufgaben

Gesamtkraft mehrerer Kräfte

Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben

Zerlegung einer Kraft in zwei Komponenten

Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben

Erstes KEPLERsches Gesetz

Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel
Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel Zu den Aufgaben

Drittes KEPLERsches Gesetz

Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung in Planetensystemen

Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel
Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel Zu den Aufgaben

Siderische und synodische Umlaufzeit

Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben

Energie der Sonne

Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Seil und Rolle

Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel
Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel Zu den Aufgaben

Hebel

Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben

Himmelskörper

Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben
Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

DOPPLER-Effekt

Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Aktivität eines Präparats

Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Halbwertszeit

Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben

Strahlenschutz

Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben
Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Ausbreitung Elektromagnetischer Wellen

Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben