Direkt zum Inhalt

Grundwissen

Drittes KEPLERsches Gesetz

Das Wichtigste auf einen Blick

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.
Aufgaben Aufgaben
Drittes KEPLERsches Gesetz

Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen\[\frac{{T_1^2}}{{T_2^2}} = \frac{{a_1^3}}{{a_2^3}}\]Anders formuliert: Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert\[\frac{{T_1^2}}{{a_1^3}} = \frac{{T_2^2}}{{a_2^3}} = ... = C\]Die Konstante \(C\), die für jedes Zentralgestirn einen anderen Wert hat, bezeichnet man als KEPLER-Konstante.

Abb. 1 Drittes KEPLERsches Gesetz: Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen

Das dritte KEPLERsche Gesetz vergleicht die Umlaufzeiten verschiedener Planeten um das gleiche Zentralgestirn Sonne. Planeten mit größerer Sonnenferne brauchen wesentlich länger für einen Umlauf als nahe Planeten. So benötigt etwa der sonnennächste Planet Merkur nur 88 Tage für einen Umlauf, wohingegen der sonnenferne Neptun für einen Umlauf 165 Jahre benötigt.

Das dritte Gesetz von KEPLER ist natürlich auch anwendbar, wenn ein anderes Zentralgestirn als die Sonne ausgewählt wird (z.B. der Planet Jupiter für alle Jupitermonde). Es ist allerdings zu beachten, dass die in die Formel eingesetzten Daten sich immer auf das gleiche Zentralgestirn beziehen müssen.

Für das Zentralgestirn Sonne gilt \[C_{\rm{Sonne}} = 2{,}97 \cdot {10^{ - 19}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]für das Zentralgestirn Jupiter gilt\[C_{\rm{Jupiter}} = 3{,}1 \cdot {10^{ -16}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]und für das Zentralgestirn Erde\[C_{\rm{Erde}} = 9{,}91 \cdot {10^{ -14}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]

Die KEPLERschen Gesetze gehen davon aus, dass die Masse des Zentralkörpers deutlich größer ist als die Masse der umlaufenden Körper. Ist dies nicht der Fall, müssen die Gesetzmäßigkeiten abgeändert werden.

Das dritte Gesetz von KEPLER lieferte den Schlüssel für Aussagen über die Ausdehnung unseres Planetensystems. Während man die Umlaufzeiten der Planeten relativ einfach messen konnte, war die Angabe der absoluten Länge einer großen Halbachse im System schwierig. Aber erst mit Kenntnis der Umlaufzeiten und der Länge der großen Halbachse eines Planeten können die Halbachsen anderer Planeten durch das 3. KEPLERsche Gesetz bestimmt werden.

Ursache im Gravitationsgesetz

Hinter dem dritten KEPLERschen Gesetz steckt das NEWTONsche Gravitationsgesetz. Darin kommt zum Ausdruck, dass die Gravitationskraft umgekehrt proportional zum Quadrat des Abstands von Zentralkörper und Trabant ist.\[{F_{\rm{G}}} = G \cdot \frac{{{m_{\rm{S}}} \cdot {m_{\rm{P}}}}}{{{r_{\rm{SP}}}^2}}\]Die Gravitationskraft bewirkt eine Beschleunigung, die einen Massekörper (hier die Masse des Planeten \({m_{\rm{P}}}\)) in der Nähe eines anderen schweren Körpers (hier die Masse der Sonne \({m_{\rm{S}}}\)) auf die charakteristische Bahn (Ellipsenbahn oder Hyperbelbahn) zwingt. Im einfachsten Fall der Kreisbahn ist diese beschleunigende Kraft senkrecht zur Bewegungsrichtung und bewirkt nur eine Änderung der Bewegungsrichtung nicht eine Änderung des Geschwindigkeitsbetrags, sie wirkt als Zentripetalkraft \({\vec F_{{\rm{ZP}}}}\) mit \({F_{{\rm{ZP}}}} = {m_{\rm{P}}} \cdot {\omega ^2} \cdot r\) und \({\omega} = \frac{{2 \cdot {\pi}}}{{T}}\). Damit ergibt sich\[{F_{\rm{G}}} = {F_{{\rm{ZP}}}} \Leftrightarrow G \cdot \frac{{{m_{\rm{S}}} \cdot {m_{\rm{P}}}}}{{{r_{{\rm{SP}}}}^2}} = {m_{\rm{P}}} \cdot {\left( {\frac{{2 \cdot \pi }}{T}} \right)^2} \cdot {r_{{\rm{SP}}}} \Leftrightarrow \frac{{{T^2}}}{{{r_{{\rm{SP}}}}^3}} = \frac{{4 \cdot {\pi ^2}}}{{G \cdot {m_{\rm{S}}}}}\]Es gilt also\[\frac{{{T^2}}}{{{r^3}}} = C\]oder allgemein für Ellipsenbahnen\[\frac{{{T^2}}}{{{a^3}}} = C\]mit\[C = \frac{{4 \cdot {\pi ^2}}}{{G \cdot {m_{{\rm{Zentralkörper}}}}}}\]

Das wirkliche Zweikörperproblem

Joachim Herz Stiftung
Abb. 2 In Wirklichkeit bewegen sich zwei gravitationsgebundene Körper um einen gemeinsamen Schwerpunkt, der sich gleichförmig durch den Raum bewegt.

In Wirklichkeit bewegen sich zwei gravitationsgebundene Körper um einen gemeinsamen Schwerpunkt, der sich gleichförmig durch den Raum bewegt.
Der gegenseitige Abstand r ist die Summe aus dem Abstand der Sonne zum Schwerpunkt (\(r_{\rm{s}}\)) und des Abstands des Planeten zum Schwerpunkt (\(r_{\rm{p}}\))

Es gilt: \(r = r_{\rm{s}}+r_{\rm{p}}\)

Aus dem Hebelgesetz folgt die Schwerpunktgleichung \(m_{\rm{s}} \cdot r_{\rm{s}} = m_{\rm{p}} \cdot r_{\rm{p}}\)

Es gilt demnach:

\(\begin{array}{l}{m_P} \cdot {r_P} = {m_S} \cdot (r - {r_P}) \Rightarrow {m_P} \cdot {r_P} = {m_S} \cdot r - {m_S} \cdot {r_P}) \Rightarrow \\({m_P} + {m_S}) \cdot {r_P} = {m_S} \cdot r \Rightarrow {r_P} = \frac{{{m_S}}}{{{m_P} + {m_S}}} \cdot r\end{array}\)

Joachim Herz Stiftung
Abb. 3 Zerlegt man die Bewegung der beiden sich umkreisenden Massenkörper in die reine lineare Bewegung mit dem Schwerpunkt.

Zerlegt man die Bewegung der beiden sich umkreisenden Massenkörper in die reine lineare Bewegung mit dem Schwerpunkt und die Kreisbewegungen um den gemeinsamen Schwerpunkt (siehe Bild rechts), so bewirkt die erstere keinerlei Beschleunigung und damit keine Kraft, die Kreisbewegung aber zeigt die wahren Kräfte.
Wir betrachten nur die Kraft auf den Planeten, nicht die gegengleiche Kraft auf die Sonne.
Dabei ist die Gravitationskraft bestimmt durch den gegenseitigen Abstand r, die Zentralkraft aber durch den Abstand rP des Planeten vom Schwerpunkt.

\[{F_{\rm{G}}} = {F_{{\rm{ZP}}}}\]\[\Leftrightarrow G \cdot \frac{{{m_S} \cdot {m_P}}}{{{r^2}}} = {m_{\rm{P}}} \cdot {\omega ^2} \cdot {r_{\rm{P}}} = \frac{{4{\pi ^2}}}{{{T^2}}} \cdot \frac{{{m_S} \cdot {m_P}}}{{{m_P} + {m_S}}} \cdot r\]

Der Ausdruck \(\frac{{{m_S} \cdot {m_P}}}{{{m_P} + {m_S}}} \) wird als reduzierte Masse bezeichnet, eine fiktive Masse, die die Kraftwirkung auf eine Masse mp im Abstand rP durch das Hebelgesetz auf eine ebenso große Kraftwirkung auf die reduzierte Masse im Abstand r überträgt. Damit folgt: \[ \Rightarrow \frac{{{T^2}}}{{{r^3}}} = \frac{{4{\pi ^2}}}{{G \cdot ({m_P} + {m_S})}}\]

Für \({m_p}<<{m_s}\), was sicher für die meisten Planeten, Asteroiden und Kometen im Sonnensystem gilt, folgt in guter Näherung wieder die vereinfachte Darstellung. Haben die Objekte jedoch ähnlich große Massen, muss – wie hier gezeigt – die Summe der Massen berücksichtigt werden.

Im allgemeinen Fall einer Ellipse ist \(r\) durch \(a\) zu ersetzen.