Die Erde hat eine Umlaufzeit um die Sonne von \(365{,}25\,\rm{d}\) oder einem Jahr. Alle anderen Planeten des Sonnensystems haben, entsprechend ihrer Lage, kürzere (untere Planeten) oder längere (obere Planeten) Umlaufzeiten. Wie man nun aus Beobachtungen von der Erde aus die Umlaufzeiten der anderen Planeten um die Sonne ermitteln kann zeigen wir dir in diesem Artikel.
Zuerst einmal müssen wir folgende Definition machen.
Konjunktion und Opposition
Als Konjunktion eines Planeten in Bezug auf die Sonne bezeichnen wir die Situation, dass sich von der Erde aus gesehen der Planet und die Sonne scheinbar an der gleichen Stelle des Himmels befinden, sich also scheinbar "begegnen". Wegen der leichten Neigung der Planetenbahnen gegen die Ekliptik nehmen die Planeten und die Sonne während einer Konjunktion nur selten exakt denselben Ort am Himmel ein, d. h. es kommt zu einer Bedeckung.
Die Konjunktion eines oberen Planeten (in Abb. 1 dunkelblau) mit der Sonne (in Abb. 1 gelb) tritt nur dann auf, wenn sich die Sonne zwischen Planet und Erde (in Abb. 1 hellblau) befindet.
Die Konjunktion eines unteren Planeten (in Abb. 1 rot) mit der Sonne tritt dann auf, wenn sich die Sonne zwischen Planet und Erde (obere Konjunktion) oder aber der Planet zwischen Sonne und Erde (untere Konjunktion) befindet.
Als Opposition eines Planeten in Bezug auf die Sonne bezeichnen wir die Situation, dass sich von der Erde aus gesehen der Planet und die Sonne genau "gegenüber" am Himmel befinden. Diese Konstellation ist nur für obere Planeten möglich.
Siderische und synodische Umlaufzeit
Die folgenden zwei Animationen zeigen die Bewegung der Erde (hellblau), der Venus (rot) als Beispiel für einen unteren Planeten und des Mars (dunkelblau) als Beispiel für einen oberen Planeten um die Sonne (gelb). Bei dieser Bewegung unterscheiden wir in der Astronomie zwei verschiedene Umlaufzeiten.
Siderische und synodische Umlaufzeit
Als siderische Umlaufzeit (lat. sidus „Stern“, Genitiv sideris) \({T_{{\rm{sid}}}}\) eines Planeten bezeichnen wir die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
Als synodische Umlaufzeit (altgriechisch σύνοδος synodos ‚Zusammentreffen‘) \({T_{{\rm{syn}}}}\) eines Planeten bezeichen wir die Zeitspanne, die der Planet von einer Oppositionsstellung bzw. Konjunktionsstellung zur nächsten benötigt.
Zwischen siderischer und synodischer Umlaufzeit besteht ein Zusammenhang, der sich leicht herleiten lässt.
Herleitung für einen oberen Planeten
Wir betrachten die Winkel, die die Radiusvektoren zwischen zwei Oppositionen überstreichen. Die Erde läuft in dieser Zeit mindestens einmal vollständig um die Sonne herum. Dabei gelten folgende Beziehungen zwischen Winkeln und Zeiten:\[\frac{{{\alpha _{\rm{E}}}}}{{360^\circ }} = \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} \Leftrightarrow {\alpha _{\rm{E}}} = 360^\circ \cdot \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}}\quad(1)\]\[\frac{{{\alpha _{\rm{P}}}}}{{360^\circ }} = \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} \Leftrightarrow {\alpha _{\rm{P}}} = 360^\circ \cdot \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}}\quad(2)\]Außerdem ersieht man folgenden Winkelzusammenhang für die Winkel zwischen zwei aufeinanderfolgenden Oppositionsstellungen aus der Zeichnung\[{\alpha _{\rm{E}}} = {\alpha _{\rm{P}}} + 360^\circ \quad(3)\]Setzt man \((1)\) und \((2)\) in \((3)\) ein, so erhält man\[\begin{eqnarray}360^\circ \cdot \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} &=& 360^\circ \cdot \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} + 360^\circ \quad \left| {\;:} \right.360^\circ \\\frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} &=& \frac{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} + 1 \quad \left| {\;:} \right.{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}\\\frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} &=& \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} + \frac{1}{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}}\\\frac{1}{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}} &=& \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} - \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}}\end{eqnarray}\]
Herleitung für einen unteren Planeten
Analog lässt sich für die unteren Planeten (Merkur, Venus) die entsprechende Formel\[\frac{1}{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}} = \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} - \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}}\]herleiten.
Hinweis: Der gleiche Zusammenhang besteht auch zwischen der Umlaufzeit eines Planeten um die Sonne, der Eigenrotationszeit um die Planetenachse und der Tageslänge.
Zusammenhang zwischen siderischer und synodischer Umlaufzeit
Für die beiden unteren Planeten Merkur und Venus gilt für die siderischen und synodischen Umlaufzeiten der Zusammenhang\[\frac{1}{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}} = \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}} - \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}}\]Für die oberen Planeten Mars, Jupiter, Saturn, Uranus und Neptun gilt für die siderischen und synodischen Umlaufzeiten der Zusammenhang\[\frac{1}{{{T_{{\rm{syn}}{\rm{,}}\;{\rm{Planet}}}}}} = \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Erde}}}}}} - \frac{1}{{{T_{{\rm{sid}}{\rm{,}}\;{\rm{Planet}}}}}}\]Dabei beträgt die siderische Umlaufzeit der Erde \(T_{\rm{sid}\rm{,}\;\rm{Erde}}=365{,}25\,\rm{d}\).
Aufgabe
Die Zeitdauer zwischen zwei Marsoppositionen beträgt \(780\,\rm{d}\).
Berechne daraus die siderische Umlaufzeit des Mars.