Direkt zum Inhalt
Suchergebnisse 31 - 60 von 910

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Wärmetransport

Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Ablesen von Kraftmessern

Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben

Geschwindigkeit bei gleichförmiger Bewegung

Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben

Mittlere Geschwindigkeit

Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben

Beschleunigte Bewegung

Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel
Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel
Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel Zu den Aufgaben

Beschleunigung bei gleichmäßig beschleunigter Bewegung

Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Mittlere Beschleunigung

Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben

Potenzielle Energie im Gravitationsfeld

Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Arbeit im Gravitationsfeld

Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben

Gleichmäßig verzögerte Bewegung

Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben

Fundamentale und abgeleitete Kräfte

Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben

Beschreibung von Kräften

Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Kosmische Geschwindigkeiten

Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben
Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Mondfinsternis

Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben

Schräger Wurf nach oben mit Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x + h\).

Zum Artikel Zu den Aufgaben