Direkt zum Inhalt
Suchergebnisse 31 - 60 von 63

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Fadenpendel

Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Supraleitung

Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel
Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel Zu den Aufgaben

Fliehkraftregler von James WATT (Simulation)

Ausblick
Ausblick

Erklärung der Gezeiten

Ausblick
Ausblick

Wirkungen der Gezeitenkraft auf die Erde

Ausblick
Ausblick

Botafumeiro (Simulation)

Ausblick
Ausblick