Direkt zum Inhalt
Suchergebnisse 61 - 90 von 135

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben

Wiegen im Vakuum

Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel
Versuche

  • Nachweis der Auftriebskraft auf Köper in Luft.
  • Bestätigung des Archimedischen Prinzips für Körper in Gasen.

Zum Artikel Zu den Aufgaben

Rollen

Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel
Versuche

  • Verdeutlichung der nötigen Kräfte an einem Flaschenzug
  • Motivation des Konzepts der tragenden Seile über Kräftebetrachtung

Zum Artikel Zu den Aufgaben

Abflachung der Erde

Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel
Versuche

  • Demonstration der Abplattung einer Kugel durch Rotation.
  • Veranschaulichung der Beziehung zwischen Stärke der Abplattung und der Rotationsgeschwindigkeit.

Zum Artikel Zu den Aufgaben

Rotierende Kerze

Versuche
Versuche

Stehende Querwellen

Versuche
Versuche

Cartesischer Taucher

Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel
Versuche

  • Verdeutlichung des Einflusses der Masse eines Körpers auf Schwimmen, Schweben, Sinken
  • Einfacher Selbstbau eines Cartesischen Tauchers

Zum Artikel Zu den Aufgaben

Bedeckungsveränderliche Doppelsterne

Versuche
Versuche

Video zum Flaschenzug

Versuche
Versuche

Auswerten eines Films zum freien Fall

Versuche
Versuche

Hebellabor (Simulation von PhET)

Versuche
Versuche

Kugel in rotierender Rinne

Versuche

  • Demonstration der Massenunabhängigkeit der Kugelposition
  • Ermittlung der Steighöhe \(h\) in Abhängigkeit von Winkelgeschwindigkeit und Geometrie der Rinne

Zum Artikel
Versuche

  • Demonstration der Massenunabhängigkeit der Kugelposition
  • Ermittlung der Steighöhe \(h\) in Abhängigkeit von Winkelgeschwindigkeit und Geometrie der Rinne

Zum Artikel Zu den Aufgaben

Rotierendes Wassergefäß

Versuche
Versuche

Fallröhre

Versuche

Mit diesem Versuch können wir nachweisen, dass an einem Ort alle Körper gleich zum Erdboden beschleunigen, wenn keine Reibungskräfte, sondern nur die Gewichtskraft auf die Körper wirkt.

Zum Artikel
Versuche

Mit diesem Versuch können wir nachweisen, dass an einem Ort alle Körper gleich zum Erdboden beschleunigen, wenn keine Reibungskräfte, sondern nur die Gewichtskraft auf die Körper wirkt.

Zum Artikel Zu den Aufgaben

Kommunizierende Röhren

Versuche

  • Demonstration der Bedeutung der Formel \(p=\rho\cdot g\cdot h\) für Füllhöhen von kommunizierenden Röhren.
  • Anknüpfung an technische Anwendungen, die dieses Prinzip ausnutzen.

Zum Artikel
Versuche

  • Demonstration der Bedeutung der Formel \(p=\rho\cdot g\cdot h\) für Füllhöhen von kommunizierenden Röhren.
  • Anknüpfung an technische Anwendungen, die dieses Prinzip ausnutzen.

Zum Artikel Zu den Aufgaben

Balkenwaage und Auftriebskraft

Versuche
Versuche

Heimversuch Kerzenwippe

Versuche
Versuche

Reibung an schiefer Ebene

Versuche

Reibungskoeffizienten lassen sich sehr einfach mit Hilfe der Steigung einer schiefen Ebene bestimmen

Zum Artikel
Versuche

Reibungskoeffizienten lassen sich sehr einfach mit Hilfe der Steigung einer schiefen Ebene bestimmen

Zum Artikel Zu den Aufgaben