Direkt zum Inhalt
Suchergebnisse 961 - 990 von 1097

Henry CAVENDISH (1731 - 1810)

Geschichte
Geschichte

Christiaan HUYGENS (1629 - 1695)

Geschichte
Geschichte

Historische Waagen

Geschichte
Geschichte

ARCHIMEDES und die Krone

Geschichte
Geschichte

Otto von GUERICKE (1602 - 1686)

Geschichte
Geschichte

Christian Andreas DOPPLER (1803 - 1853)

Geschichte
Geschichte

Gravitationskonstante historisch

Geschichte
Geschichte

Geschichte der Längenmessung

Geschichte
Geschichte

Geschichte des Radfahrens

Geschichte
Geschichte

Isaac NEWTON korrigiert René DESCARTES

Geschichte
Geschichte

Die Bewegungslehre des ARISTOTELES

Geschichte
Geschichte

Geschichte der Rakete

Geschichte
Geschichte

Raumfahrt in Europa

Geschichte
Geschichte

GALILEIs Untersuchung des freien Falls

Geschichte
Geschichte

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Raser auf der Autobahn

Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe

Kran aus der Römerzeit

Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe

Die ATWOODsche Fallmaschine

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe

Gleitschlitten ohne Reibung

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe

Gleitschlitten mit Reibung

Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe

Energieerhaltung beim freien Fall

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe

Energieerhaltung beim Gleitschlitten ohne Reibung

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe

Energieerhaltung bei der ATWOODschen Fallmaschine

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe

Energieerhaltung beim Gleitschlitten mit Reibung

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe In Abb. 1 siehst du einen Körper 2 der Masse \(m_2\), der aus einer Höhe \(s\) losgelassen…

Zur Aufgabe

Freier Fall

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe Abb. 1 zeigt den Aufbau eines typischen Versuchs zum freien Fall. Ein Körper mit der Masse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur Aufgabe Abb. 1 zeigt den Aufbau eines typischen Versuchs zum freien Fall. Ein Körper mit der Masse…

Zur Aufgabe