Direkt zum Inhalt
Suchergebnisse 991 - 1020 von 1135

Geschichte des Fliegens

Geschichte
Geschichte

Kurze Geschichte der Waagen

Geschichte
Geschichte

Isaac NEWTON (1643 - 1727)

Geschichte
Geschichte

Der Weg zum physikalischen Kraftbegriff von ARISTOTELES bis NEWTON

Geschichte
Geschichte

Gedanken zum freien Fall

Geschichte
Geschichte

GALILEIs Dialog zum Trägheitssatz

Geschichte
Geschichte

Loránt EÖTVÖS (1848 - 1919)

Geschichte
Geschichte

Henry CAVENDISH (1731 - 1810)

Geschichte
Geschichte

Christiaan HUYGENS (1629 - 1695)

Geschichte
Geschichte

Historische Waagen

Geschichte
Geschichte

ARCHIMEDES und die Krone

Geschichte
Geschichte

Otto von GUERICKE (1602 - 1686)

Geschichte
Geschichte

Christian Andreas DOPPLER (1803 - 1853)

Geschichte
Geschichte

Gravitationskonstante historisch

Geschichte
Geschichte

Geschichte der Längenmessung

Geschichte
Geschichte

Geschichte des Radfahrens

Geschichte
Geschichte

Isaac NEWTON korrigiert René DESCARTES

Geschichte
Geschichte

Die Bewegungslehre des ARISTOTELES

Geschichte
Geschichte

Geschichte der Rakete

Geschichte
Geschichte

Raumfahrt in Europa

Geschichte
Geschichte

GALILEIs Untersuchung des freien Falls

Geschichte
Geschichte

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Raser auf der Autobahn

Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe

Kran aus der Römerzeit

Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe