Direkt zum Inhalt
Suchergebnisse 1 - 30 von 30

Physik des Fliegens

Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Kreisbewegung

Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel
Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Auftriebskraft

Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben

Festlegung der Dichte

Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben

Reflexion

Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel
Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel Zu den Aufgaben

Vorübungen zur Kräftezerlegung

Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel
Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energieübertrag

Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben

Gravitation - Ursache der Gewichtskraft

Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel
Grundwissen

  • Physikalische Ursache für die Gewichtskraft ist die Massenanziehung, auch Gravitation genannt.
  • Die Größe der Gravitationskraft wird vom Abstand \(r\) der sich anziehenden Körper und ihren Massen \(m_1, m_2\) beeinflusst.

Zum Artikel Zu den Aufgaben

Luftdruck

Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Luftdruck ist der Druck, der aufgrund der Gewichtskraft der Luftsäule überhalb eines Körpers auf diesen Körper wirkt. 
  • Luftdruck wird häufig in der Einheit \(\rm{bar}\) angegeben, wobei \(1\,\rm{bar}=10^5\,\rm{Pa}\) entspricht.
  • Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt mit \(101\,325\,\rm{Pa}\) etwa \(1\,\rm{bar}\).

Zum Artikel Zu den Aufgaben

Zusammenhang der Diagramme

Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel
Grundwissen

  • Vom \(t\)-\(x\)- zum \(t\)-\(v\)-Diagramm gelangst du durch Berechnen der Geschwindigkeit \(v\) in jedem Abschnitt der Bewegung.
  • Vom \(t\)-\(v\)- zum \(t\)-\(x\)-Diagramm gelangst du durch Berechnen der jeweiligen Flächen zwischen Graph und Rechtsachse

Zum Artikel Zu den Aufgaben