Direkt zum Inhalt
Suchergebnisse 121 - 150 von 172

Leiterschleife im Magnetfeld

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeEin sehr langer gerader Leiter wird von dem Strom der Stärke \(I_1=7{,}5\,\rm{A}\) durchflossen.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeEin sehr langer gerader Leiter wird von dem Strom der Stärke \(I_1=7{,}5\,\rm{A}\) durchflossen.…

Zur Aufgabe

Positronen im Magnetfeld

Aufgabe ( Übungsaufgaben )

Ein 22Na-Präparat befindet sich in einem homogenen Magnetfeld der Flussdichte B = 0,020T. Eine Lochblende ist so angeordnet, dass nur…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein 22Na-Präparat befindet sich in einem homogenen Magnetfeld der Flussdichte B = 0,020T. Eine Lochblende ist so angeordnet, dass nur…

Zur Aufgabe

Magnetische Influenz

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutern Sie mit Hilfe der nebenstehenden Bilder wie es zur magnetischen Influenz (ein Körper…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutern Sie mit Hilfe der nebenstehenden Bilder wie es zur magnetischen Influenz (ein Körper…

Zur Aufgabe

Kupfersulfat im Magnetfeld

Aufgabe ( Übungsaufgaben )

Eine flache Schale mit Kupfersulfatlösung wird in das abwärtsgerichtete Feld eines Hufeisenmagneten gestellt. Es erfolgt ein Stromfluss zwischen dem…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine flache Schale mit Kupfersulfatlösung wird in das abwärtsgerichtete Feld eines Hufeisenmagneten gestellt. Es erfolgt ein Stromfluss zwischen dem…

Zur Aufgabe

Überlagerung von Magnetfeldern

Aufgabe ( Übungsaufgaben )

Die nebenstehende Abbildung zeigt die Feldstruktur zwischen den ungleichnamigen Polen zweier gleichartiger Stabmagnete.   In der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die nebenstehende Abbildung zeigt die Feldstruktur zwischen den ungleichnamigen Polen zweier gleichartiger Stabmagnete.   In der…

Zur Aufgabe

Magnetische Flussdichte in der Mittelebene von HELMHOLTZ-Spulen - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen zu lösen musst du häufig die Gleichung nach…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen zu lösen musst du häufig die Gleichung nach…

Zur Aufgabe

Kompassnadel vor Magnet

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Kompassnadel vor einer Spule In dem in Abb. 1 dargestellten Versuchsaufbau (Stromquelle, Schalter, einfache…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Kompassnadel vor einer Spule In dem in Abb. 1 dargestellten Versuchsaufbau (Stromquelle, Schalter, einfache…

Zur Aufgabe

Quiz zu bewegten Ladungen im Magnetfeld

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Schwebemagnete auf der Waage

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe

Ausmessung des Erdmagnetfelds

Aufgabe ( Übungsaufgaben )

Eine große Spule mit einem Flächeninhalt von \(1{,}00\,\rm{m}^2\) und \(75\) Windungen wird so aufgestellt, dass sie von den Feldlinien des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine große Spule mit einem Flächeninhalt von \(1{,}00\,\rm{m}^2\) und \(75\) Windungen wird so aufgestellt, dass sie von den Feldlinien des…

Zur Aufgabe

Magnetische Flussdichte im Innenraum von luftgefüllten Zylinderspulen - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte im Innenraum von luftgefüllten Zylinderspulen zu lösen musst du häufig die Gleichung…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte im Innenraum von luftgefüllten Zylinderspulen zu lösen musst du häufig die Gleichung…

Zur Aufgabe

Magnetschwebebahn Transrapid

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Kosmische Geschwindigkeiten

Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben
Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben

Gammastrahlung

Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel Zu den Aufgaben

Radiowellen

Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel Zu den Aufgaben

Mikrowellen

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

20 Jahre LEIFIphysik: Physikunterricht zum Wettbewerb

Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel
Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel Zu den Aufgaben

Schwache Wechselwirkung

Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Elektromotor

Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben

Gammaübergang und Gammastrahlung

Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

Beugung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben