Direkt zum Inhalt
Suchergebnisse 301 - 330 von 496

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Potential und elektrische Spannung

Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

Der Transistor-Effekt

Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben

Optischer DOPPLER-Effekt

Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel
Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel Zu den Aufgaben

Atomare Größen

Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben

Ladungseigenschaften

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Gleichgewicht von Kräften (Einführung)

Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
  • Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null. 
  • Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Kreisbewegung

Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel
Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Wirkungen von Kräften

Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Auftriebskraft

Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben

Sehvorgang

Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Festlegung der Dichte

Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben

Von Ladung zum elektrischen Strom

Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Reflexion

Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel
Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel Zu den Aufgaben

Vorübungen zur Kräftezerlegung

Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel
Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel Zu den Aufgaben