Direkt zum Inhalt
Suchergebnisse 211 - 240 von 333

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Kreisbewegung

Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel
Grundwissen

  • Ein Körper befindet sich in einer gleichförmigen Kreisbewegung, wenn er sich auf einer Kreisbahn mit konstantem Radius bewegt und auf seiner Bahn in gleich langen Zeitspannen gleich lange Strecken zurücklegt.
  • Da sich aber die Bewegungsrichtung des Körpers ständig ändert, ist die gleichförmige Kreisbewegung - trotz ihres Namens - eine beschleunigte Bewegung.

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Pulsationsveränderliche

Ausblick
Ausblick

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Auftriebskraft

Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben

Massendefekt und Bindungsenergie

Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben

Festlegung der Dichte

Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse \({m}\) eines Materials und das Volumen \({V}\) des Materials sind proportional zueinander.
  • Die Dichte \({\rho}\) ist der Quotient aus Masse und Volumen: \({\rho=\frac{m}{V} }\)
  • Die Einheit der Dichte ist \({\left[ \rho \right] = 1\,\rm{\frac{{kg}}{{{m^3}}}}}\)

Zum Artikel Zu den Aufgaben

Reflexion

Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel
Grundwissen

  • Bei der Reflexion einer Welle muss man unterscheiden, ob die Welle an einem festen oder an einem losen Ende des Wellenträgers reflektiert wird.
  • Bei der Reflexion einer Welle am festen Ende des Wellenträgers tritt ein Phasensprung auf - aus einem Wellenberg wird ein Wellental und aus einem Wellental ein Wellenberg.
  • Bei der Reflexion einer Welle am losen Ende des Wellenträgers tritt kein Phasensprung auf - ein Wellenberg bleibt ein Wellenberg und ein Wellental ein Wellental.

Zum Artikel Zu den Aufgaben

Vorübungen zur Kräftezerlegung

Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel
Grundwissen

  • Damit du ein Kräfteparallelogramm eindeutig zeichnen kannst, benötigst du z.B. die Länge der Diagrammdiagonalen und die Richtungen der beiden Seiten.
  • Die Richtungen der beiden Seiten müssen dabei aus dem physikalischen Problem, z.B. der schiefen Ebene, gewonnen werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energieübertrag

Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird einem System (von außen) Energie zugeführt, so sagen wir in der Physik "An dem System wird Arbeit verrichtet". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei vergrößert, bezeichen wir in der Physik als "die Arbeit \(W\), die an dem System verrichtet wird".
  • Gibt ein System (nach außen) Energie ab, so sagen wir in der Physik "Das System verrichtet Arbeit". Den Betrag \(\Delta E\), um den sich die Energie des Systems dabei verkleinert, bezeichen wir in der Physik als "die Arbeit \(W\), die das System verrichtet". Bei konkreten Rechnungen setzen wir in diesem Fall die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=\Delta E=E_{\rm{nachher}}-E_{\rm{vorher}}\). Damit gilt: Wird an einem System gearbeitet, dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) positiv. Verrichtet ein System dagegen Arbeit, dann dann ist die Arbeit \(W\) und die Energieänderung \(\Delta E\) negativ.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibungsarbeit.

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben

Erstes KEPLERsches Gesetz

Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel
Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel Zu den Aufgaben

Drittes KEPLERsches Gesetz

Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben