Direkt zum Inhalt
Suchergebnisse 211 - 240 von 268

Energieaufnahme von Atomen durch (Resonanz-)Absorption von Photonen

Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch Stoßanregung

Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Druckmessungen am Profil

Versuche
Versuche

Impulsänderung der Luft

Versuche
Versuche

Dehnung eines Drahtes

Versuche

  • Untersuchung der Dehnung eines Drahtes

Zum Artikel
Versuche

  • Untersuchung der Dehnung eines Drahtes

Zum Artikel Zu den Aufgaben

Schrödingers Schlange - Simulation

Versuche

  • Randbedingung für sinnvolle Lösungen der Schrödinger-Gleichung erkennen
  • Finden verschiedener Energiewerte, die Wellenfunktion im Unendlichen Null werden lassen

Zum Artikel
Versuche

  • Randbedingung für sinnvolle Lösungen der Schrödinger-Gleichung erkennen
  • Finden verschiedener Energiewerte, die Wellenfunktion im Unendlichen Null werden lassen

Zum Artikel Zu den Aufgaben

Wurfparabel

Versuche

Mit diesem Versuch kannst du zeigen, dass die Bahnkurven des waagerechten und des schrägen Wurfs Parabeln sind.

Zum Artikel
Versuche

Mit diesem Versuch kannst du zeigen, dass die Bahnkurven des waagerechten und des schrägen Wurfs Parabeln sind.

Zum Artikel Zu den Aufgaben

Gitterspektrometer (Selbstbau-Spektrometer)

Versuche

  • Untersuchung verschiedener Spektren durch die Lerner

Zum Artikel
Versuche

  • Untersuchung verschiedener Spektren durch die Lerner

Zum Artikel Zu den Aufgaben

Fadenpendel

Versuche

  • Mit diesem Versuch lässt sich die Abhängigkeit der Schwingungsdauer eines Fadenpendels von der Anfangsauslenkung und von der Masse des Pendelkörpers untersuchen

Zum Artikel
Versuche

  • Mit diesem Versuch lässt sich die Abhängigkeit der Schwingungsdauer eines Fadenpendels von der Anfangsauslenkung und von der Masse des Pendelkörpers untersuchen

Zum Artikel Zu den Aufgaben

BOYLE-MARIOTTE (Selbstbau)

Versuche
Versuche

Sonnenfinsternis (Video)

Versuche
Versuche

Warum fällt der Mond nicht auf die Erde?

Versuche
Versuche

Gewinnung des MOSELEY-Gesetzes

Versuche

  • Ermittlung des MOSELEY-Gesetzes aus den charakteristischen Linien im RÖNTGEN-Spektrum

Zum Artikel
Versuche

  • Ermittlung des MOSELEY-Gesetzes aus den charakteristischen Linien im RÖNTGEN-Spektrum

Zum Artikel Zu den Aufgaben

Resonanzabsorption von Natrium (quantitativ)

Versuche

  • Demonstration der quantenhaften Absorption von Photonen durch Atome am Beispiel von Natrium
  • Nachweis der Übereinstimmung von Absorptions- und Emissionslinien am Beispiel von Natrium

Zum Artikel
Versuche

  • Demonstration der quantenhaften Absorption von Photonen durch Atome am Beispiel von Natrium
  • Nachweis der Übereinstimmung von Absorptions- und Emissionslinien am Beispiel von Natrium

Zum Artikel Zu den Aufgaben

Verdampfen von Wasser - Fortführung

Versuche
Versuche

Emissionsspektren von gefärbten Flammen (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener gefärbter Flammen

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener gefärbter Flammen

Zum Artikel Zu den Aufgaben

Arbeit an der schiefen Ebene

Versuche
Versuche

Betrag der Zentripetalkraft

Versuche

  • Untersuchung der Abhängigkeiten von \(m\), \(r\) und \(\omega\) auf die Zentripetalkraft \(F_{\rm{ZP}}\)
  • Übung des Auswertens von Messdaten
  • Herleitung der Formel für die Zentripetalkraft \(F_{\rm{ZP}}=m\cdot \omega^2\cdot r\)

Zum Artikel
Versuche

  • Untersuchung der Abhängigkeiten von \(m\), \(r\) und \(\omega\) auf die Zentripetalkraft \(F_{\rm{ZP}}\)
  • Übung des Auswertens von Messdaten
  • Herleitung der Formel für die Zentripetalkraft \(F_{\rm{ZP}}=m\cdot \omega^2\cdot r\)

Zum Artikel Zu den Aufgaben

Untersuchung einer Fahrradfahrt

Versuche
Versuche

Kräftegleichgewicht (Schülerversuch)

Versuche
Versuche

Rubinlaser

Ausblick
Ausblick