Direkt zum Inhalt
Suchergebnisse 91 - 120 von 321

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Energie und Energieerhaltungssatz

Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Drehmoment

Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel
Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel Zu den Aufgaben

Rotationsenergie

Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben

Analogie zwischen Linearer und Drehbewegung

Grundwissen

  • Zwischen linearen Bewegungen und Drehbewegungen lassen sich viele Analogien finden. Für viele Größen der linearen Bewegung existiert eine vergleichbare Größe bei Drehbewegungen.

Zum Artikel
Grundwissen

  • Zwischen linearen Bewegungen und Drehbewegungen lassen sich viele Analogien finden. Für viele Größen der linearen Bewegung existiert eine vergleichbare Größe bei Drehbewegungen.

Zum Artikel Zu den Aufgaben

Drehimpuls

Grundwissen

  • Der Drehimpuls \(\vec{L}\) eines Körpers ist \(\vec{L}=J\cdot\vec{\omega}\) mit Trägheitsmoment \(J\) und Winkelgeschwindigkeit \(\vec{\omega}\).
  • Der Drehimpuls ist eine Erhaltungsgröße: In einem abgeschlossenen System bleibt der Gesamtdrehimpuls konstant, wenn kein äußeres Drehmoment wirkt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Drehimpuls \(\vec{L}\) eines Körpers ist \(\vec{L}=J\cdot\vec{\omega}\) mit Trägheitsmoment \(J\) und Winkelgeschwindigkeit \(\vec{\omega}\).
  • Der Drehimpuls ist eine Erhaltungsgröße: In einem abgeschlossenen System bleibt der Gesamtdrehimpuls konstant, wenn kein äußeres Drehmoment wirkt.

Zum Artikel Zu den Aufgaben

Bewegungsgesetz der gleichförmigen Bewegung

Grundwissen

  • Bei der gleichförmigen Bewegung gilt \(v=\rm{konstant}\)
  • Das Zeit-Weg-Gesetz der gleichförmigen Bewegung lautet \(s=v\cdot t\)
  • Dabei hat der Körper zu \(t=0\,\rm{s}\) noch keine Strecke zurückgelegt

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der gleichförmigen Bewegung gilt \(v=\rm{konstant}\)
  • Das Zeit-Weg-Gesetz der gleichförmigen Bewegung lautet \(s=v\cdot t\)
  • Dabei hat der Körper zu \(t=0\,\rm{s}\) noch keine Strecke zurückgelegt

Zum Artikel Zu den Aufgaben

Umrechnen von Geschwindigkeitseinheiten

Grundwissen

  • Maßeinheiten der Geschwindigkeit wie \(\rm{\frac{km}{h}}\) oder \(\rm{\frac{m}{s}}\) kannst du ineinander umrechnen.
  • Um von \(\rm{\frac{m}{s}}\) in \(\rm{\frac{km}{h}}\) umzurechnen, multiplizierst du die Maßzahl mit \(3{,}6\) und änderst die Maßeinheit.
  • Um von \(\rm{\frac{km}{h}}\) in \(\rm{\frac{m}{s}}\) umzurechnen, dividierst du die Maßzahl durch \(3{,}6\) und änderst die Maßeinheit.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Maßeinheiten der Geschwindigkeit wie \(\rm{\frac{km}{h}}\) oder \(\rm{\frac{m}{s}}\) kannst du ineinander umrechnen.
  • Um von \(\rm{\frac{m}{s}}\) in \(\rm{\frac{km}{h}}\) umzurechnen, multiplizierst du die Maßzahl mit \(3{,}6\) und änderst die Maßeinheit.
  • Um von \(\rm{\frac{km}{h}}\) in \(\rm{\frac{m}{s}}\) umzurechnen, dividierst du die Maßzahl durch \(3{,}6\) und änderst die Maßeinheit.

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Wirkungen von Kräften

Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben

Träge Masse

Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Statische Kraftmessung

Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

1. Newtonsches Gesetz (Trägheitsgesetz)

Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben

Strategie beim Lösen von Bewegungsaufgaben

Grundwissen

  • Die NEWTONschen Gesetze ermöglichen die Bewegung eines Körpers in der Zukunft vorherzusagen, wenn Anfangsbedingungen und wirkende Kräfte bekannt sind.
  • Man unterscheidet zwischen drei verschiedenen Fällen der Beschleunigung \(\vec{a}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die NEWTONschen Gesetze ermöglichen die Bewegung eines Körpers in der Zukunft vorherzusagen, wenn Anfangsbedingungen und wirkende Kräfte bekannt sind.
  • Man unterscheidet zwischen drei verschiedenen Fällen der Beschleunigung \(\vec{a}\).

Zum Artikel Zu den Aufgaben

Haft-, Gleit- und Rollreibung

Grundwissen

  • Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung

Zum Artikel Zu den Aufgaben

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Energieerhaltung

Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Leistung

Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Generator- und Motorprinzip

Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben

Herleitung der Auftriebskraft aus dem Schweredruck

Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben