Direkt zum Inhalt
Suchergebnisse 31 - 56 von 56

Fadenpendel

Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Fadenpendel mit einem Faden der Länge \(l\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( \omega \cdot t \right)\) mit \(\omega=\sqrt {\frac{g}{l}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{l}{{g}}} \); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung und der Masse \(m\) des Pendelkörpers.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft

Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim gedämpften Pendel wirkt zusätzlich zur Federkraft auch eine Reibungskraft auf den Pendelkörper.
  • Für verschiedene Werte von Pendelmasse \(m\), Federkonstante \(D\) und Dämpfungskonstante \(k\) hat die Bewegungsgleichung unterschiedliche Lösungen
  • Man unterscheidet drei Fälle: Schwingfall, aperiodischer Grenzfall und Kriechfall

Zum Artikel Zu den Aufgaben

Stehende Wellen - Analyse mit Wellenfunktion

Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mathematisch kannst du eine stehende Welle durch Addition der Wellenfunktionen der sich überlagernden Wellen beschreiben.
  • Die sich ergebende Wellenfunktion zeigt, dass die Schwingung in allen Punkten phasengleich, aber die Amplitude ortsabhängig ist.

Zum Artikel Zu den Aufgaben

Kinetische Energie

Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die kinetische Energie \(E_{\rm{kin}}\) eines Körpers ist proportional zu seiner Masse \(m\) und proportional zum Quadrat \(v^2\) seiner Geschwindigkeit.
  • Für die kinetische Energie eines Körpers gilt \(E_{\rm{kin}}=\frac{1}{2}\cdot m\cdot v^2\).
  • Die Einheit der kinetischen Energie ist das Joule: \(\left[ E_{\rm{kin}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Potentielle Energie

Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie \(E_{\rm{pot}}\) "eines Körpers" ist proportional zu seiner Masse \(m\), dem Ortsfaktor \(g\) und zur Höhe \(h\) des Körpers über einem definierten Nullniveau (meist dem Erdboden).
  • Für die potentielle Energie gilt \(E_{\rm{pot}} = m \cdot g \cdot h\).
  • Die Einheit der potentiellen Energie ist das Joule: \(\left[ E_{\rm{pot}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Spannenergie

Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Spannenergie \(E_{\rm{Spann}}\) einer gedehnten Feder ist proportional zu ihrer Federkonstante \(D\) und proportional zum Quadrat \(s^2\) ihrer Längenänderung.
  • Für die Spannenergie einer Feder gilt \(E_{\rm{Spann}}=\frac{1}{2}\cdot D\cdot s^2\).
  • Die Einheit der Spannenergie ist das Joule: \(\left[ E_{\rm{Spann}} \right] =1\,\rm{J}\).

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Supraleitung

Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel
Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel Zu den Aufgaben

Fliehkraftregler von James WATT (Simulation)

Ausblick
Ausblick

Erklärung der Gezeiten

Ausblick
Ausblick

Wirkungen der Gezeitenkraft auf die Erde

Ausblick
Ausblick

Botafumeiro (Simulation)

Ausblick
Ausblick

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben