Direkt zum Inhalt
Suchergebnisse 181 - 210 von 232

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Effektives Potential

Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel
Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel Zu den Aufgaben

Herleitung des ersten KEPLERschen Gesetzes

Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel
Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des zweiten KEPLERschen Gesetzes

Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel
Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des dritten KEPLERschen Gesetzes

Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel
Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel Zu den Aufgaben

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

PRANDTL-Rohr

Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Astronomie

Astronomie Einführung

  • Warum dauert ein Jahr 365 Tage?
  • Woher kommen eigentlich die verschiedenen Jahreszeiten?
  • Warum gibt es die Mondphasen?
  • Wie entstehen Sonnen- und Mondfinsternisse?

Zum Themenbereich
Themenbereich

Astronomie

Fixsterne

  • Wie wird ein Stern geboren?
  • Was ist ein Roter Riese …
  • … und was ein Weißer Zwerg?
  • Wie entstehen eigentlich Schwarze Löcher?

Zum Themenbereich
Themenbereich

Astronomie

Sonne

  • Ist unsere Sonne eigentlich auch ein Stern?
  • Wie ist unsere Sonne in ihrem Innern aufgebaut?
  • Woher erhält die Sonne eigentlich ihre Energie?
  • Wie sieht die Zukunft unserer Sonne aus?

Zum Themenbereich
Themenbereich

Astronomie

Sternbeobachtung

  • Wie orientiert man man sich auf der Himmelskugel
  • Wie bestimmt man eigentlich Entfernungen im Sonnensystem?
  • Wie bestimmt man Positionen am Himmel?

Zum Themenbereich
Themenbereich

Astronomie

Planetensystem

  • Nach welchen Gesetzen bewegen sich die Planeten?
  • Warum kreisen die Planeten eigentlich um die Sonne?
  • Welche Energie benötigt eine Mondrakete?
  • Kommen wir jemals aus unserem Sonnensystem heraus?

Zum Themenbereich
Themenbereich

Mechanik

Arbeit, Energie und Leistung

  • Was ist der Unterschied zwischen Arbeit und Kraft?
  • Woher kommt und wohin geht eigentlich die ganze Energie?
  • Kann man mit einem Fahrrad einen Liter Wasser zum Kochen bringen?

Zum Themenbereich
Themenbereich

Mechanik

Beschleunigte Bewegung

  • Was heißt eigentlich „Von 0 auf 100 in 6 Sekunden“?
  • Ist Bremsen denn auch Beschleunigen?
  • Wird man beim Beschleunigen wirklich immer schneller?

Zum Themenbereich
Themenbereich

Mechanik

Druck und Auftrieb

  • Warum kann ein Fakir in einem Nagelbett schlafen?
  • „Stöckelschuhe verboten!“  Warum eigentlich?
  • Warum können Menschen nicht beliebig tief tauchen?
  • Wie steigt eigentlich der Wasserdruck mit der Tiefe?

Zum Themenbereich
Themenbereich

Mechanik

Einfache Maschinen

  • Warum benutzen Einbrecher sogenannte „Brecheisen“?
  • Kann man mit einer Rampe Arbeit sparen?
  • Wie funktioniert eigentlich ein Flaschenzug?
  • Warum hat ein Fahrrad denn eine Gangschaltung?

Zum Themenbereich
Themenbereich

Mechanik

Gleichförmige Bewegung

  • Was versteht man unter einer 'gleichförmigen Bewegung'?
  • Wie definiert man eigentlich 'Geschwindigkeit'?
  • Wie misst man denn Geschwindigkeiten?
  • Vom Schneckentempo bis zur Lichtgeschwindigkeit

Zum Themenbereich
Themenbereich

Mechanik

Kraft und Bewegungsänderung

  • Warum braucht man im Weltall eigentlich keinen Antrieb?
  • Braucht man für eine Kurvenfahrt ständig Kraft?

Zum Themenbereich
Themenbereich

Mechanik

Kraft und das Gesetz von HOOKE

  • Wie werden im Alltag Kräfte gemessen?
  • Wie funktioniert eine Federwaage?
  • Biegt sich eine Betondecke eigentlich durch, wenn man auf ihr steht?
  • Was versteht man unter einer Zerreißprobe?

Zum Themenbereich
Themenbereich

Mechanik

Kraft und Masse; Ortsfaktor

  • Was ist denn der Unterschied zwischen Masse und Gewicht?
  • Nimmt man eigentlich im Weltall ab?
  • Ist ein Kilogramm Gold wirklich überall gleich schwer?

Zum Themenbereich
Themenbereich

Mechanik

Kraft und Kraftarten

  • Kräfte – manchmal anziehend, manchmal abstoßend …
  • Was hält unsere Welt eigentlich zusammen?
  • Warum spricht man von Kernkraftwerken?

Zum Themenbereich
Themenbereich

Mechanik

Kräfteaddition und -zerlegung

  • Ziehen zwei immer stärker als einer?
  • Was ist eigentlich ein „Kräfteparallelogramm“?
  • Warum müssen Messer immer scharf sein?

Zum Themenbereich
Themenbereich

Mechanik

Masse, Volumen und Dichte

  • Was ist schwerer, 1 Kilogramm Federn oder 1 Kilogramm Blei?
  • Wie hat ARCHIMEDES die Krone des Hiero von Syrakus vermessen?

Zum Themenbereich
Themenbereich

Mechanik

Impulserhaltung und Stöße

  • Was passiert beim Zusammenstoß zweier Körper?
  • Was versteht man eigentlich unter dem Rückstoßprinzip?
  • Was hat Billardspielen mit der Impulserhaltung zu tun?

Zum Themenbereich
Themenbereich

Mechanik

Freier Fall - Senkrechter Wurf

  • Warum nützt die Physik beim Basketball?
  • Was versteht man unter dem „Unabhängigkeitsprinzip“?
  • Wie berechnet man die Bahn von Kanonenkugeln?

Zum Themenbereich
Themenbereich

Mechanik

Lineare Bewegung - Gleichungen

  • Was versteht man unter einem Zeit-Orts-Diagramm?
  • Geschwindigkeit - Beschleunigung – was ist denn der Unterschied?
  • Wie bestimmt man eine Momentangeschwindigkeit?
  • Von Reaktionszeiten und Bremswegen …

Zum Themenbereich
Themenbereich