Direkt zum Inhalt
Suchergebnisse 2101 - 2130 von 2367

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Elektromagnetischer Schwingkreis schwach gedämpft - Schwingfall (Theorie)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Schwingungsdämpfung durch Wirbelströme

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Quiz zur Schaltung von Batterien

Aufgabe ( Quiz )
Aufgabe ( Quiz )

1. + 2. Newtonsches Gesetz (Heimversuche)

Versuche
Versuche

Kapazität eines Plattenkondensators (Simulation von PhET)

Versuche
Versuche

OHMsches Gesetz (historische Version)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit konstanter Spannung und einem veränderbaren Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis vom Leiter ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit konstanter Spannung und einem veränderbaren Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis vom Leiter ab?

Zum Artikel Zu den Aufgaben

Energieformen und Energieumwandlungen (Simulation von PhET)

Versuche
Versuche

COULOMB-Gesetz (Simulation von PhET)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig das COULOMB-Gesetz erarbeiten.

Zum Artikel
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig das COULOMB-Gesetz erarbeiten.

Zum Artikel Zu den Aufgaben

Interferenz von Wasserwellen (Simulation von PhET)

Versuche
Versuche

OHMsches Gesetz (Version A)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit veränderlicher Spannung und einem Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis von der Spannung \(U\) der elektrischen Quelle ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit veränderlicher Spannung und einem Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis von der Spannung \(U\) der elektrischen Quelle ab?

Zum Artikel Zu den Aufgaben

OHMsches Gesetz (Version B)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Raser auf der Autobahn

Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein AUDI ‚verfolgt’ (!?) auf der Autobahn einen BMW, ein bekannter ‚Wettbewerb’ zwischen sogenannten ‚dynamischen’…

Zur Aufgabe

Kran aus der Römerzeit

Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Kran wurde bereits von den Römern verwendet, um schwere Lasten zu heben und zu versetzen. Die Animation in Abb. 1 zeigt den Aufbau und die…

Zur Aufgabe

Die ATWOODsche Fallmaschine

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau der ATWOODschen Fallmaschine Abb. 1 zeigt den Aufbau der von dem englischen Physiker und Erfinder George…

Zur Aufgabe

Gleitschlitten ohne Reibung

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Die Reibung zwischen Gleitschlitten und Unterlage soll vernachlässigt werden Abb.…

Zur Aufgabe

Gleitschlitten mit Reibung

Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

  Joachim Herz Stiftung Abb. 1 Aufbau eines Gleitschlittens. Zwischen Gleitschlitten und Unterlage…

Zur Aufgabe

Energieerhaltung beim freien Fall

Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn Abb. 1 siehst du einen Körper der Masse \(m\), der aus einer Höhe \(s\) losgelassen werden…

Zur Aufgabe