Direkt zum Inhalt
Suchergebnisse 901 - 930 von 938

Leiterschleife im Magnetfeld

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeEin sehr langer gerader Leiter wird von dem Strom der Stärke \(I_1=7{,}5\,\rm{A}\) durchflossen.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeEin sehr langer gerader Leiter wird von dem Strom der Stärke \(I_1=7{,}5\,\rm{A}\) durchflossen.…

Zur Aufgabe

Bestimmung der LORENTZ-Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben

Bestimmung der LORENTZ-Kraft - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der LORENTZ-Kraft zu lösen musst du häufig die Gleichung \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der LORENTZ-Kraft zu lösen musst du häufig die Gleichung \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin…

Zur Aufgabe

Geladener Tropfen im Erdmagnetfeld

Aufgabe ( Übungsaufgaben )

Das Erdmagnetfeld habe an einem Beobachtungsort die Flussdichte \(6{,}5 \cdot 10^{-5}\,{\rm{T}}\), der Vektor des magnetischen Feldes schließt mit der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Erdmagnetfeld habe an einem Beobachtungsort die Flussdichte \(6{,}5 \cdot 10^{-5}\,{\rm{T}}\), der Vektor des magnetischen Feldes schließt mit der…

Zur Aufgabe

Flug parallel zum Draht

Aufgabe ( Übungsaufgaben )

Ein Elektron bewegt sich mit einer Geschwindigkeit \(5{,}45 \cdot 10^6\,\frac{\rm{m}}{\rm{s}}\) im Abstand von \(8{,}00\,{\rm{cm}}\) parallel zu einem…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Elektron bewegt sich mit einer Geschwindigkeit \(5{,}45 \cdot 10^6\,\frac{\rm{m}}{\rm{s}}\) im Abstand von \(8{,}00\,{\rm{cm}}\) parallel zu einem…

Zur Aufgabe

Bestimmung der magnetischen Kraft - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Kraft zu lösen musst du häufig die Gleichung \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Kraft zu lösen musst du häufig die Gleichung \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot…

Zur Aufgabe

Magnetische Flussdichte im Innenraum von luftgefüllten Zylinderspulen - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte im Innenraum von luftgefüllten Zylinderspulen zu lösen musst du häufig die Gleichung…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der magnetischen Flussdichte im Innenraum von luftgefüllten Zylinderspulen zu lösen musst du häufig die Gleichung…

Zur Aufgabe

Quiz zur Elektronenstrahl-Ablenkröhre

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Fadenstrahlrohr

Aufgabe ( Quiz )
Aufgabe ( Quiz )

HALL-Spannung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der HALL-Spannung zu lösen musst du häufig die Gleichung \(U_{\rm{H}} = R_{\rm{H}} \cdot \frac{I \cdot B}{d} \)…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Berechnung der HALL-Spannung zu lösen musst du häufig die Gleichung \(U_{\rm{H}} = R_{\rm{H}} \cdot \frac{I \cdot B}{d} \)…

Zur Aufgabe

e/m nach BUSCH (Abitur BY 2007 LK A1-1)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze des VersuchsaufbausIn einer Versuchsanordnung nach Hans BUSCH (1884 - 1973) aus dem Jahr 1926 befindet sich…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze des VersuchsaufbausIn einer Versuchsanordnung nach Hans BUSCH (1884 - 1973) aus dem Jahr 1926 befindet sich…

Zur Aufgabe

Induktion durch Änderung der magnetischen Flussdichte

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktionserscheinungen

Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel
Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite (Sonderfall) - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um diesen Sonderfall der Induktion durch Änderung der Winkelweite zu lösen musst du häufig die Gleichung \(\hat U_{\rm{i}} = N \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um diesen Sonderfall der Induktion durch Änderung der Winkelweite zu lösen musst du häufig die Gleichung \(\hat U_{\rm{i}} = N \cdot…

Zur Aufgabe

Induktion durch Änderung der magnetischen Flussdichte - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Induktion durch Änderung der magnetischen Flussdichte zu lösen, musst du häufig die Gleichung \({U_{\rm{i}}} = - {N} \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Induktion durch Änderung der magnetischen Flussdichte zu lösen, musst du häufig die Gleichung \({U_{\rm{i}}} = - {N} \cdot…

Zur Aufgabe

Elektromagnetischer Schwingkreis ungedämpft (Theorie)

Ausblick
Ausblick

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Elektrisches Feld bei einem Gewitter (Abitur BY 2020 Ph11-2 A1)

Aufgabe ( Übungsaufgaben )

Die Unterseite einer Gewitterwolke hat den Flächeninhalt \(A=9{,}5\,\rm{km}^2\) und befindet sich in \(500\,\rm{m}\) Höhe über dem Erdboden. Sie lässt…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Unterseite einer Gewitterwolke hat den Flächeninhalt \(A=9{,}5\,\rm{km}^2\) und befindet sich in \(500\,\rm{m}\) Höhe über dem Erdboden. Sie lässt…

Zur Aufgabe

Geschwindigkeitsmessung beim Fahrrad (Abitur BY 2020 Ph11-2 A2)

Aufgabe ( Übungsaufgaben )

Zur Demonstration der Geschwindigkeitsmessung eines Fahrrads wird ein Neodym-Magnet an einer Speiche des fest eingespannten Vorderrads befestigt.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zur Demonstration der Geschwindigkeitsmessung eines Fahrrads wird ein Neodym-Magnet an einer Speiche des fest eingespannten Vorderrads befestigt.…

Zur Aufgabe

THOMSONsche Schwingungsgleichung - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

a) Ein Kondensator der Kapazität \(0{,}10\,\rm{\mu F}\) und eine Spule der Induktivität \(55\,\rm{mH}\) bilden…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

a) Ein Kondensator der Kapazität \(0{,}10\,\rm{\mu F}\) und eine Spule der Induktivität \(55\,\rm{mH}\) bilden…

Zur Aufgabe

Messung großer Wechselströme

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabenstellungDurch einen geraden, sehr langen Leiter fließt ein sehr großer Wechselstrom mit der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabenstellungDurch einen geraden, sehr langen Leiter fließt ein sehr großer Wechselstrom mit der…

Zur Aufgabe

Induktion durch Änderung des Flächeninhalts (Sonderfall) - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um den Sonderfall bei der Induktion durch Änderung des Flächeninhalts zu lösen musst du häufig die Gleichung \(\left| U_{\rm{i}}…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um den Sonderfall bei der Induktion durch Änderung des Flächeninhalts zu lösen musst du häufig die Gleichung \(\left| U_{\rm{i}}…

Zur Aufgabe

Induktion durch Änderung des Flächeninhalts - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Induktion durch Änderung des Flächeninhalts zu lösen musst du häufig die Gleichung \({U_{\rm{i}}} = - {N} \cdot {B} \cdot…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Um Aufgaben rund um die Induktion durch Änderung des Flächeninhalts zu lösen musst du häufig die Gleichung \({U_{\rm{i}}} = - {N} \cdot {B} \cdot…

Zur Aufgabe

Spezifischer Widerstand

Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben

Ladungen in elektrischen Leitern

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Elektroskop, Influenz und Ladungsverteilung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Experimente mit Glimmlämpchen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Gemischte Experimente mit Ladung

Aufgabe ( Quiz )
Aufgabe ( Quiz )