Direkt zum Inhalt
Suchergebnisse 61 - 90 von 160

Strahlendes Mondgestein (Abitur BY 2009 GK A4-1)

Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe

Brout-Englert-Higgs-Mechanismus und das Higgs-Teilchen

Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe

h-Bestimmung mit RÖNTGEN-Strahlung (Abitur BY 2005 GK A3-3)

Aufgabe ( Übungsaufgaben )

a) Unknown author, Public domain, via…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Unknown author, Public domain, via…

Zur Aufgabe

Positronium-Atom (Abitur BY 2014 Ph12-2 A2)

Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(e^+\) zum Elektron heißt Positron. Als Positronen-Quelle für Experimente wird häufig der β+-Strahler \({}^{22}{\rm{Na}}\)…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Anti-Teilchen \(e^+\) zum Elektron heißt Positron. Als Positronen-Quelle für Experimente wird häufig der β+-Strahler \({}^{22}{\rm{Na}}\)…

Zur Aufgabe

RYDBERG-Atome (Abitur BY 2004 GK A3-2)

Aufgabe ( Übungsaufgaben )

Atome, die sich in sehr hoch angeregten Zuständen befinden, werden als RYDBERG-Atome bezeichnet. Durch radioastronomische Beobachtungen wurden im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Atome, die sich in sehr hoch angeregten Zuständen befinden, werden als RYDBERG-Atome bezeichnet. Durch radioastronomische Beobachtungen wurden im…

Zur Aufgabe

Radioaktive Leuchtfarben (Abitur BY 2016 Ph12-2 A3)

Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe

Eindimensionaler Potentialtopf (Abitur BY 2007 GK A3-2)

Aufgabe ( Übungsaufgaben )

Das Zustandekommen von diskreten Energieniveaus (charakterisiert durch die Quantenzahl n) für ein in der Atomhülle gebundenes Elektron kann am Modell…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Das Zustandekommen von diskreten Energieniveaus (charakterisiert durch die Quantenzahl n) für ein in der Atomhülle gebundenes Elektron kann am Modell…

Zur Aufgabe

Hochleistungs-Rubinlaser

Aufgabe ( Übungsaufgaben )

US gov, Public domain, via Wikimedia Commons, Beschriftungen von LEIFIphysik Abb. 1 RubinlaserWährend die kontinuierlich arbeitenden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

US gov, Public domain, via Wikimedia Commons, Beschriftungen von LEIFIphysik Abb. 1 RubinlaserWährend die kontinuierlich arbeitenden…

Zur Aufgabe

Kohlendioxid-Laser (Abitur BY 2011 LK A3-2)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 EnergieniveauschemaUm bei einem mit Kohlendioxid (\(\rm{CO}_2\)) betriebenen Laser die \(\rm{CO}_2\)-Moleküle aus…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 EnergieniveauschemaUm bei einem mit Kohlendioxid (\(\rm{CO}_2\)) betriebenen Laser die \(\rm{CO}_2\)-Moleküle aus…

Zur Aufgabe

Paarerzeugung

Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe

Altersbestimmung von Zirkonen (Abitur BY 2017 Ph12-1 A3)

Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe

Ein historisches Experiment zur Radioaktivität (Abitur BY 2017 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe

Positronen-Emissions-Tomographie (Abitur BY 2017 Ph12-2 A2)

Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe

Massenverhältnis Kern-Hülle

Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe

Veranschaulichung der Atomgröße

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe

Dichte von Kernmaterie

Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe

Starke Ladung (Farbladung) der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Schwache Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Elektrische Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Systematik der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Symmetrie von Teilchen und Anti-Teilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Rückbau von Kernreaktoren (Abitur BY 2018 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe

Spektren

Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel
Grundwissen

  • Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
  • Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
  • Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
  • Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Der Transistor-Effekt

Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben

Atomare Größen

Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben