Direkt zum Inhalt
Suchergebnisse 211 - 240 von 351

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Stehende Wellen und Eigenschwingungen

Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Sehvorgang

Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben

Massendefekt und Bindungsenergie

Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Von Ladung zum elektrischen Strom

Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Dotierte Halbleiter

Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RL-Kreisen

Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben

DOPPLER-Effekt

Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Schallwellen

Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel
Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Lochkamera

Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit

Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben