Direkt zum Inhalt
Suchergebnisse 2131 - 2160 von 2405

Federpendel ungedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Modellbildung)

Ausblick
Ausblick

Feder-Schwere-Pendel gedämpft (Modellbildung)

Ausblick
Ausblick

Kommunizierende Röhren im Alltag

Ausblick
Ausblick

Wurf nach unten (Modellbildung)

Ausblick
Ausblick

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Elektromagnetischer Schwingkreis schwach gedämpft - Schwingfall (Theorie)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Schwingungsdämpfung durch Wirbelströme

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Quiz zur Schaltung von Batterien

Aufgabe ( Quiz )
Aufgabe ( Quiz )

1. + 2. Newtonsches Gesetz (Heimversuche)

Versuche
Versuche

Kapazität eines Plattenkondensators (Simulation von PhET)

Versuche
Versuche

OHMsches Gesetz (historische Version)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit konstanter Spannung und einem veränderbaren Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis vom Leiter ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit konstanter Spannung und einem veränderbaren Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis vom Leiter ab?

Zum Artikel Zu den Aufgaben

Energieformen und Energieumwandlungen (Simulation von PhET)

Versuche
Versuche

COULOMB-Gesetz (Simulation von PhET)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig das COULOMB-Gesetz erarbeiten.

Zum Artikel
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig das COULOMB-Gesetz erarbeiten.

Zum Artikel Zu den Aufgaben

Interferenz von Schallwellen (Simulation von PhET)

Versuche
Versuche

Interferenz von Wasserwellen (Simulation von PhET)

Versuche
Versuche

OHMsches Gesetz (Version A)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit veränderlicher Spannung und einem Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis von der Spannung \(U\) der elektrischen Quelle ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle mit veränderlicher Spannung und einem Leiter.

Wie hängt die Stromstärke \(I\) im Stromkreis von der Spannung \(U\) der elektrischen Quelle ab?

Zum Artikel Zu den Aufgaben

OHMsches Gesetz (Version B)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben