Direkt zum Inhalt
Suchergebnisse 31 - 60 von 261

Energie im Gravitationsfeld

Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben

HERTZSPRUNG-RUSSELL-Diagramm

Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben

Strahlensatz

Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Potential und elektrische Spannung

Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in Chemie und Biologie

Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel
Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Medizin

Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Technik

Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben

HERTZsche Versuche

Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel
Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel Zu den Aufgaben

Magnetische Wirkung des elektrischen Stroms

Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Atomare Vorstellungen der Elektrizität

Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben

LENZsche Regel

Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben

Magnetischer Fluss und Induktionsgesetz

Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben

Streuexperiment

Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Kettenreaktion

Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben

Licht als Teilchen - Vorstellungen von Newton

Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel
Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel Zu den Aufgaben

Kosmische Hintergrundstrahlung

Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel
Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel Zu den Aufgaben

Optischer DOPPLER-Effekt

Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel
Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel Zu den Aufgaben

Nuklidkarte

Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben

Ladungseigenschaften

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • In Leitern können sich negative Ladungen relativ frei bewegen.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Fortführung

Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben

Himmelskugel

Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben

Elementarladung

Grundwissen

  • Die elektrische Ladung ist eine gequantelte Größe
  • Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
  • Die Ladung eines Elektrons beträgt \(-e\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Ladung ist eine gequantelte Größe
  • Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
  • Die Ladung eines Elektrons beträgt \(-e\)

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben