Direkt zum Inhalt
Suchergebnisse 1 - 30 von 48

20 Jahre LEIFIphysik: Physikunterricht zum Wettbewerb

Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel
Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel Zu den Aufgaben

Energie und ihre Eigenschaften

Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel
Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel Zu den Aufgaben

Influenz und Polarisation

Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben

Magnetische Wirkung des elektrischen Stroms

Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben

Atomare Vorstellungen der Elektrizität

Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Widerstand

Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

3. NEWTONsches Gesetz (Wechselwirkungsprinzip)

Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kräfte wirken immer wechselseitig. Übt A eine Kraft auf B aus, so übt B eine gleich große, entgegengesetzt gerichtete Kraft auf A aus. Die beiden Kräfte nennt man in diesem Zusammenhang Wechselwirkungskräfte.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an.
  • Wechselwirkungskräfte dürfen nicht mit einem Kräftegleichgewicht verwechselt werden.

Zum Artikel Zu den Aufgaben

Arbeit als Energietransfer

Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie, die mit Hilfe einer Kraft \(\vec F\) längs eines Weges \(\vec s\) zugeführt wird, heißt Arbeit \(W\).
  • Wird an einem System Arbeit verrichtet, so ist \(W>0\), verrichtet ein System Arbeit, so ist \(W<0\).
  • Wird Arbeit unter einem Winkel \(\alpha\) verrichtet, so gilt \(W = |\vec F| \cdot |\vec s| \cdot \cos \left( \alpha \right)\).

Zum Artikel Zu den Aufgaben

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

1. Newtonsches Gesetz (Trägheitsgesetz)

Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein ruhender Körper bleibt in Ruhe, wenn keine äußeren Kräfte auf ihn einwirken.
  • Auch ein in in Bewegung befindlicher Körper bewegt sich mit konstanter Geschwindigkeit weiter, wenn keine äußeren Kräfte auf ihn einwirken.
  • Dieses Verhalten wird im 1. Newtonschen Gesetz beschrieben.
  • Im Alltag wirken häufig Reibungskräfte als äußere Kräfte, die einen in Bewegung befindlichen Körper abbremsen.

Zum Artikel Zu den Aufgaben

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben

Vom Stromkreis zum Schaltplan

Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben

Stromkreismodelle

Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben

Harmonische Schwingungen

Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ob eine Schwingung harmonisch ist wird durch eine der beiden folgenden Bedingungen festgelegt.
    A: Die Bewegung des schwingenden Körpers stimmt mit der Projektion einer gleichförmigen Kreisbewegung überein und kann deshalb durch eine Sinus- oder Kosinusfunktion, z.B. \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\) beschrieben werden.
    B: Die rücktreibende Kraft auf den schwingenden Körper ist entgegengesetzt gerichtet und betraglich proportional zur Auslenkung des Körpers aus der Ruhelage, kurz \({{ F}_{{\rm{rück}}}} =  - k \cdot y\). Wir sprechen dabei vom sogenannten linearen Kraftgesetz.
  • Erfüllt eine Schwingung eine dieser beiden Bedingungen, so erfüllt sie immer auch die andere.

Zum Artikel Zu den Aufgaben

Eigenschaften von Permanentmagneten

Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben

Magnetische Influenz

Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben

Elektrische Spannung

Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben

LORENTZ-Kraft

Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben