Direkt zum Inhalt
Suchergebnisse 31 - 60 von 1108

Elektrische Kraft im homogenen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Elektrische Kraft im radialsymmetrischen elektrischen Feld (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Federpendel (Simulation mit Versuchsanleitung)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Schwingungsdauer eines Federpendels von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Schwingungsdauer eines Federpendels von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel (Simulation mit Versuchsanleitung)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Schwingungsdauer eines Feder-Schwere-Pendels von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Schwingungsdauer eines Feder-Schwere-Pendels von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Schräger Wurf nach oben ohne Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben

Influenz und Polarisation

Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben

I-U-Kennlinien

Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel
Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalkraft mit Bahngeschwindigkeit (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalkraft, die auf einen Körper wirken muss, damit er sich gleichförmig auf einer Kreisbahn bewegt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel
Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalkraft, die auf einen Körper wirken muss, damit er sich gleichförmig auf einer Kreisbahn bewegt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalkraft mit Winkelgeschwindigkeit (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalkraft, die auf einen Körper wirken muss, damit er sich gleichförmig auf einer Kreisbahn bewegt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel
Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalkraft, die auf einen Körper wirken muss, damit er sich gleichförmig auf einer Kreisbahn bewegt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalbeschleunigung mit Bahngeschwindigkeit (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Betrag der Zentripetalbeschleunigung mit Winkelgeschwindigkeit (Simulation mit Versuchsanleitung)

Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben
Versuche

Die Simulation ermöglicht die Untersuchung des Betrags der Zentripetalbeschleunigung, die ein Körper während einer gleichförmigen Kreisbewegung erfährt, in Abhängigkeit von den relevanten Parametern.

Zum Artikel Zu den Aufgaben

Elektrische Kraft

Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

Stehende Wellen - Typen

Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben

Reflexion mit der Slinky-Feder

Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel
Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Schwebe-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Sink-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Magnetische Flussdichte und die Maßeinheit Tesla

Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel
Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen (qualitativ)

Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel
Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel Zu den Aufgaben

Wasserparabel (IBE der FU Berlin)

Versuche
Versuche

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung auf der Luftkissenschiene

Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben
Versuche

  • Der Versuch soll den Zusammenhang zwischen Durchschnittsgeschwindigkeit und Momentangeschwindigkeit bei einer gleichförmigen Bewegung verdeutlichen

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben