Direkt zum Inhalt
Suchergebnisse 1 - 30 von 53

Gleichförmige Bewegung (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichförmige Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichförmige Bewegungen verändern.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichförmige Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichförmige Bewegungen verändern.

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegung (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichmäßig beschleunigte Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichmäßig beschleunigte Bewegungen verändern.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause Bewegungen z.B. gleichmäßig beschleunigte Bewegungen von Körpern untersuchen. Die App auf deinem Smartphone zeigt dir dazu Diagramme, in denen der zurückgelegte Weg \(s\)  und die Geschwindigkeit \(v\) des Körpers in Abhängigkeit von der Zeit \(t \) dargestellt sind. So kannst du untersuchen, wie sich diese beiden Diagramme für verschiedene gleichmäßig beschleunigte Bewegungen verändern.

Zum Artikel Zu den Aufgaben

Elektromagnetische Anregung

Versuche
Versuche

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Supraleitung

Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel
Ausblick

  • Supraleitung beschreibt die praktisch widerstandsfrei Leitung von Strom in einigen Materialien bei tiefen Temperaturen.
  • Unterhalb einer Sprungtemperatur verliert ein Supraleiter seinen elektrischen Widerstand.
  • Supraleiter ermöglichen große Ströme und werden z.B. in Kernspintomographen oder in Teilchenbeschleunigern genutzt.

Zum Artikel Zu den Aufgaben

Lord KELVIN (Sir William Thomson) (1824 - 1907)

Geschichte
Geschichte

Anomalie des Wassers

Versuche

Mit dem hier dargestellten Versuch kann die Volumenausdehnung von Wasser bei Abkühlung von ca. \(14^\circ {\rm{C}}\) auf \(0^\circ {\rm{C}}\) untersucht und damit die Anomalie des Wassers nachgewiesen werden.

Zum Artikel
Versuche

Mit dem hier dargestellten Versuch kann die Volumenausdehnung von Wasser bei Abkühlung von ca. \(14^\circ {\rm{C}}\) auf \(0^\circ {\rm{C}}\) untersucht und damit die Anomalie des Wassers nachgewiesen werden.

Zum Artikel Zu den Aufgaben

Ernest RUTHERFORD (1871 - 1937)

Geschichte
Geschichte

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Anders CELSIUS (1701 - 1744)

Geschichte
Geschichte

Video zum Magnetismus in der Relativitätstheorie

Weblink

Dieses Video erklärt, wie sich der Magnetismus aus der relativistischen Betrachtung von bewegten Ladungen ergibt und zeigt einige Beispiele und Anwendungen für die Wirkung von Magnetismus auf bewegte Ladungen.
Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video erklärt, wie sich der Magnetismus aus der relativistischen Betrachtung von bewegten Ladungen ergibt und zeigt einige Beispiele und Anwendungen für die Wirkung von Magnetismus auf bewegte Ladungen.
Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Relativistische Elektronen im Magnetfeld (Abitur BY 2005 GK A1-3)

Aufgabe ( Übungsaufgaben )

Im Punkt P treten Elektronen mit der Geschwindigkeit \(v = 0,98 \cdot c\) in ein begrenztes homogenes Magnetfeld ein. In der Skizze ist die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Im Punkt P treten Elektronen mit der Geschwindigkeit \(v = 0,98 \cdot c\) in ein begrenztes homogenes Magnetfeld ein. In der Skizze ist die…

Zur Aufgabe

Perpetuum Mobile - Magnet auf Rampe (Animation)

Download ( Animationen )

Die Animation zeigt eine Idee für ein Perpetuum Mobile: Ein Magnet zieht eine Eisenkugel (dunkelblau) die Rampe hoch bis zu einem Loch, durch das sie…

Zum Download
Download ( Animationen )

Die Animation zeigt eine Idee für ein Perpetuum Mobile: Ein Magnet zieht eine Eisenkugel (dunkelblau) die Rampe hoch bis zu einem Loch, durch das sie…

Zum Download

Geschwindigkeitsmessung

Ausblick
Ausblick

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

Entdeckung des Lasers

Geschichte
Geschichte

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Atommodell von BOHR

Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben
Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben

Kathodenstrahlversuche von LENARD

Versuche
Versuche

Positronen im Magnetfeld

Aufgabe ( Übungsaufgaben )

Ein 22Na-Präparat befindet sich in einem homogenen Magnetfeld der Flussdichte B = 0,020T. Eine Lochblende ist so angeordnet, dass nur…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein 22Na-Präparat befindet sich in einem homogenen Magnetfeld der Flussdichte B = 0,020T. Eine Lochblende ist so angeordnet, dass nur…

Zur Aufgabe

Magnetschwebebahn Transrapid

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe

Magnetpendel - Stabiles und instabiles Gleichgewicht (Animation)

Download ( Animationen )

Die Animation zeigt den Unterschied zwischen stabilem und instabilem Gleichgewicht.

Zum Download
Download ( Animationen )

Die Animation zeigt den Unterschied zwischen stabilem und instabilem Gleichgewicht.

Zum Download

Schwebemagnete auf der Waage

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe

Kosmische Geschwindigkeiten

Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben
Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben

Laser-Typen

Ausblick
Ausblick

Joseph-Louis GAY-LUSSAC (1778-1850)

Geschichte
Geschichte