Direkt zum Inhalt
Suchergebnisse 1 - 30 von 165

Experiment von BUCHERER (Abitur BY 2021 Ph 11-1 A1)

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze der VersuchsanordnungMit der abgebildeten evakuierten Anordnung (Abb. 1) wird die Ablenkung von Elektronen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze der VersuchsanordnungMit der abgebildeten evakuierten Anordnung (Abb. 1) wird die Ablenkung von Elektronen…

Zur Aufgabe

Relativitätsprinzip von GALILEI als Dialog zwischen Lehrer und Schüler

Geschichte
Geschichte

Relativistische Protonen (Abitur BY 1974 LK A2-2)

Aufgabe ( Übungsaufgaben )

a) Untersuche, von welcher Beschleunigungsspannung an man für Protonen den relativistischen Massenzuwachs…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Untersuche, von welcher Beschleunigungsspannung an man für Protonen den relativistischen Massenzuwachs…

Zur Aufgabe

Eine Fahrt zu Alpha Centauri

Aufgabe ( Übungsaufgaben )

CC-BY 4.0 ESO/Digitized Sky Survey 2 Abb. 1 Teleskopaufnahme des Sternensystems \(\alpha\)-Centauri.Das unserer Sonne nächstgelegene…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

CC-BY 4.0 ESO/Digitized Sky Survey 2 Abb. 1 Teleskopaufnahme des Sternensystems \(\alpha\)-Centauri.Das unserer Sonne nächstgelegene…

Zur Aufgabe

Zwillingsbruder auf Reisen (Zwillingsparadoxon)

Aufgabe ( Übungsaufgaben )

Auf einer Weltraumreise fährt Astronaut Max mit der Geschwindigkeit \(0{,}60\cdot c\) in Bezug zur Erde, wo sein Zwillingsbruder Sepp zurückbleibt.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Auf einer Weltraumreise fährt Astronaut Max mit der Geschwindigkeit \(0{,}60\cdot c\) in Bezug zur Erde, wo sein Zwillingsbruder Sepp zurückbleibt.…

Zur Aufgabe

Lebensdauer von Myonen

Aufgabe ( Übungsaufgaben )

Myonen wurden 1936 von Carl D. ANDERSON und Seth NEDDERMEYER bei der Untersuchung von kosmischer Strahlung entdeckt. Myonen entstehen in einer Höhe…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Myonen wurden 1936 von Carl D. ANDERSON und Seth NEDDERMEYER bei der Untersuchung von kosmischer Strahlung entdeckt. Myonen entstehen in einer Höhe…

Zur Aufgabe

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

MICHELSON-MORLEY-Experiment

Versuche

  • Bestimmung der Geschwindigkeit der Erde im Lichtäther
  • Ergebnis: Die Lichtgeschwindigkeit bleibt entgegen der Erwartungen konstant
  • Folgerungen: Es gibt keinen Lichtäther 

Zum Artikel
Versuche

  • Bestimmung der Geschwindigkeit der Erde im Lichtäther
  • Ergebnis: Die Lichtgeschwindigkeit bleibt entgegen der Erwartungen konstant
  • Folgerungen: Es gibt keinen Lichtäther 

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Warum steigt ein Heißluftballon?

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wärmetauscher

Aufgabe ( Übungsaufgaben )

Hinweis: Diese Aufgabe wurde im Rahmen des bundesweiten Wettbewerbs Physik gestellt. Wenn Du dich mit den neuen Aufgaben des Wettbewerbs…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Hinweis: Diese Aufgabe wurde im Rahmen des bundesweiten Wettbewerbs Physik gestellt. Wenn Du dich mit den neuen Aufgaben des Wettbewerbs…

Zur Aufgabe

Geschickte Versuchsanordnung

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutere, welchen Zweck die skizzierte Versuchsanordnung erfüllt.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutere, welchen Zweck die skizzierte Versuchsanordnung erfüllt.

Zur Aufgabe

Benzintank in der Sonne

Aufgabe ( Übungsaufgaben )

Erläutere, warum man ein voll getanktes Auto nicht in die Sonne stellen darf, wohl aber ein halb voll getanktes.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Erläutere, warum man ein voll getanktes Auto nicht in die Sonne stellen darf, wohl aber ein halb voll getanktes.

Zur Aufgabe

Ablesegenauigkeit von Thermometern

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 ThermometerErläutere, durch welche Maßnahmen man die Ablesegenauigkeit eines Flüssigkeitsthermometers erhöhen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 ThermometerErläutere, durch welche Maßnahmen man die Ablesegenauigkeit eines Flüssigkeitsthermometers erhöhen…

Zur Aufgabe

Bügeleisen

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 BügeleisenBei dem nebenstehend skizzierten Bügeleisen ist zur Temperaturregelung ein Bimetallschalter…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 BügeleisenBei dem nebenstehend skizzierten Bügeleisen ist zur Temperaturregelung ein Bimetallschalter…

Zur Aufgabe

Verbogene Stange

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutere, in welche Richtung sich die Stange bei einseitiger Sonnenbestrahlung biegt.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeErläutere, in welche Richtung sich die Stange bei einseitiger Sonnenbestrahlung biegt.

Zur Aufgabe

Quecksilberschaukel

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn einer geschlossenen Glasröhre befindet sich an den Enden jeweils gleichviel…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeIn einer geschlossenen Glasröhre befindet sich an den Enden jeweils gleichviel…

Zur Aufgabe

Maximum-Minimum-Thermometer

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 ThermometerBeschreibe den Aufbau und die Funktionsweise eines sogenannten Maximum-Minimum-Thermometers. Gib die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 ThermometerBeschreibe den Aufbau und die Funktionsweise eines sogenannten Maximum-Minimum-Thermometers. Gib die…

Zur Aufgabe

Klecksender Füller

Aufgabe ( Übungsaufgaben )

Erläutere, warum Füller am ehesten klecksen, wenn die Patrone fast leer ist.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Erläutere, warum Füller am ehesten klecksen, wenn die Patrone fast leer ist.

Zur Aufgabe

Schwebender Körper

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau zum Versuch mit dem schwebenden KörperIn einem Becher befindet sich zu Beginn gut durchmischtes Wasser von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Aufbau zum Versuch mit dem schwebenden KörperIn einem Becher befindet sich zu Beginn gut durchmischtes Wasser von…

Zur Aufgabe

Unpassende Kugel

Aufgabe ( Übungsaufgaben )

Die Kugel passt bei Zimmertemperatur gerade nicht durch den Ring. Erläutere, was man tun kann, damit sie durchpasst. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Kugel passt bei Zimmertemperatur gerade nicht durch den Ring. Erläutere, was man tun kann, damit sie durchpasst. …

Zur Aufgabe

Geeignete Thermometerflüssigkeit

Aufgabe ( Übungsaufgaben )

a) Entscheide und begründe, welches Diagramm zu welcher Flüssigkeit gehört. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Entscheide und begründe, welches Diagramm zu welcher Flüssigkeit gehört. …

Zur Aufgabe