Direkt zum Inhalt
Suchergebnisse 31 - 60 von 161

Nuklidkarte

Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben

Lichtbrechung - Fortführung

Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben

Allgemeines Gasgesetz

Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Wärmetransport

Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Kurzer Überblick: Was ist Teilchenphysik?

Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel
Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel Zu den Aufgaben

Das Prinzip der Vereinfachung

Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel
Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Grundaussagen der speziellen Relativitätstheorie

Grundwissen

  • Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
  • In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ. 

Zum Artikel
Grundwissen

  • Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
  • In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ. 

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Beugung und Interferenz - Einführung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel Zu den Aufgaben

Interferenz an dünnen Schichten

Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Masse-Energie-Beziehung

Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel
Grundwissen

  • Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
  • Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
  • Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)

Zum Artikel Zu den Aufgaben

Spiegelbild - Einführung

Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben

Möglichkeiten der Kernfusion

Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel
Grundwissen

  • Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
  • Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
  • Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.

Zum Artikel Zu den Aufgaben

Spiegelbild - Fortführung

Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Stoffverhalten

Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben